

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Automotive 650 V power Schottky silicon carbide diode

Features

- AEC-Q101 qualified
- · No reverse recovery charge in application current range
- · Switching behavior independent of temperature
- Recommended to PFC applications
- · PPAP capable
- ECOPACK[®]2 compliant component

Description

The SiC diode is an ultra-high performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Especially suited for use in PFC applications, this ST SiC diode will boost performance in hard switching conditions.

Product status			
STPSC10H065BY-TR			
Product summary			
Symbol Value			
I _{F(AV)}	10 A		
V _{RRM}	650 V		
T _{j(max.)}	175 °C		

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C unless otherwise specified)

Symbol	Paran	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage $T_j = -40 ^{\circ}\text{C}$ to + 175 $^{\circ}\text{C}$		650	V
I _{F(RMS)}	Forward rms current	22	Α	
I _{F(AV)}	Average forward current	T _c = 140 °C ⁽¹⁾ , DC	10	Α
I _{FSM}	Surge non repetitive forward current	t_p = 10 ms sinusoidal, T_c = 25 °C	90	
		t_p = 10 ms sinusoidal, T_c = 125 °C	80	Α
		t_p = 10 µs square, T_c = 25 °C	470	
I _{FRM}	Repetitive peak forward current	T_c = 140 °C ⁽¹⁾ , T_j = 175 °C, δ = 0.1	42	Α
T _{stg}	Storage temperature range	-55 to +175	°C	
Tj	Operating junction temperature range ⁽²⁾	-40 to +175	°C	

^{1.} Value based on $R_{th(j-c)}$ max.

Table 2. Thermal parameters

Symbol	Parameter	Typ. value	Max. value	Unit
R _{th(j-c)}	Junction to case	1.25	1.5	°C/W

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
L (1) Bourse legling surrout		T _j = 25 °C	V- - V	-	9	100	
'R'	I _R ⁽¹⁾ Reverse leakage current	T _j = 150 °C	$V_R = V_{RRM}$	-	85	425	μA
V _E ⁽²⁾	V (2) Forward voltage drap		I _F = 10 A	-	1.45	1.65	V
VF	Forward voltage drop	T _j = 150 °C	IF - 10 A	-	1.7	2.05	V

^{1.} $t_p = 10 \text{ ms}, \ \delta < 2\%$

To evaluate the conduction losses, use the following equation:

$$P = 0.972 \times I_{F(AV)} + 0.108 \times I_{F^{2}(RMS)}$$

Table 4. Dynamic electrical characteristics

Symbol	Parameter	Test conditions	Тур.	Unit
Q _{cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	28.5	nC
C _i Total capacitance	V _R = 0 V, T _c = 25 °C, F = 1 MHz	480	pF	
C _j Total capacitance		$V_R = 400 \text{ V}, T_c = 25 \text{ °C}, F = 1 \text{ MHz}$	48	рі

^{1.} Most accurate value for the capacitive charge: $Q_{cj}=\int_0^{V_{OUT}} c_j (V_R) imes d_{VR}$

DS12496 - Rev 1 page 2/9

^{2.} $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

^{2.} $t_p = 500 \ \mu \text{s}, \ \delta < 2\%$

1.1 Characteristics (curves)

Figure 1. Forward voltage drop versus forward current (typical values, low level)

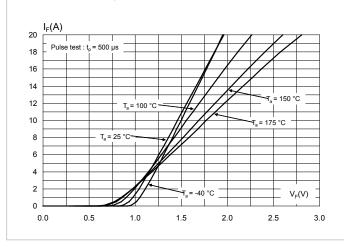


Figure 2. Forward voltage drop versus forward current (typical values, high level)

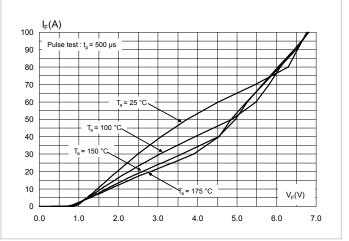


Figure 3. Reverse leakage current versus reverse voltage applied (typical values)

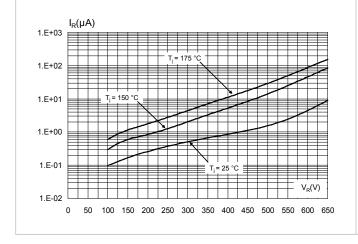


Figure 4. Peak forward current versus case temperature

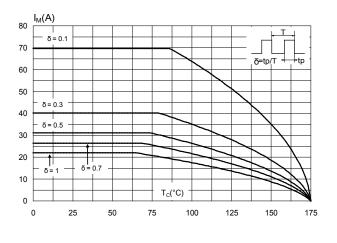


Figure 5. Junction capacitance versus reverse voltage applied (typical values)

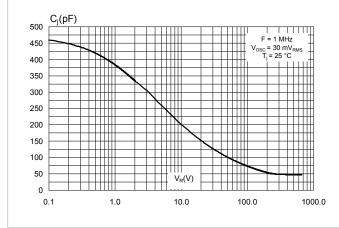
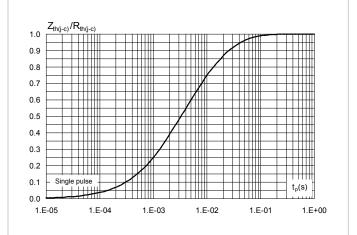



Figure 6. Relative variation of thermal impedance junction to case versus pulse duration

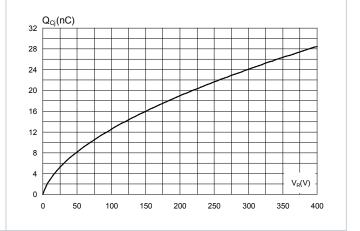
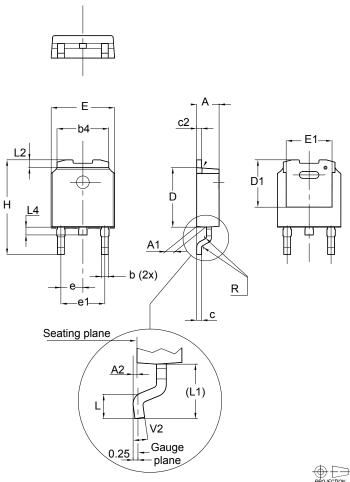

DS12496 - Rev 1 page 3/9

Figure 7. Non-repetitive peak surge forward current versus pulse duration (sinusoidal waveform)

Figure 8. Total capacitive charges versus reverse voltage applied (typical values)

DS12496 - Rev 1 page 4/9


Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

2.1 DPAK package information

- Epoxy meets UL94, V0
- Cooling method: by conduction (C)

Figure 9. DPAK package outline

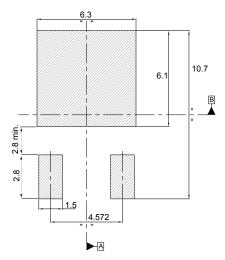

DS12496 - Rev 1 page 5/9

Table 5. DPAK mechanical data

	Dimensions						
Dim.	Millimeters			Inches			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	2.20		2.40	0.087		0.094	
A1	0.90		1.10	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
b	0.64		0.90	0.025		0.035	
b4	5.20		5.40	0.205		0.213	
С	0.45		0.60	0.018		0.024	
c2	0.48		0.60	0.019		0.024	
D	6.00		6.20	0.236		0.244	
D1	4.95	5.10	5.25	0.195	0.201	0.207	
Е	6.40		6.60	0.252		0.260	
E1	4.60	4.70	4.80	0.181	0.185	0.189	
е	2.16	2.28	2.40	0.085	0.090	0.094	
e1	4.40		4.60	0.173		0.181	
Н	9.35		10.10	0.368		0.398	
L	1.00		1.50	0.039		0.059	
(L1)	2.60	2.80	3.00	0.102	0.110	0.118	
L2	0.65	0.80	0.95	0.026	0.031	0.037	
L4	0.60		1.00	0.024		0.039	
R		0.20			0.008		
V2	0°		8°	0°		8°	

Figure 10. DPAK recommended footprint (dimensions are in mm)

The device must be positioned within �005 AB

DS12496 - Rev 1 page 6/9

3 Ordering Information

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPSC10H065BY-TR	PSC10H 065BY	DPAK	0.32 g	2500	Tape and reel

DS12496 - Rev 1 page 7/9

Revision history

Table 7. Document revision history

Date	Version	Changes
08-Mar-2018	1	Initial release.

DS12496 - Rev 1 page 8/9

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

DS12496 - Rev 1 page 9/9