

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

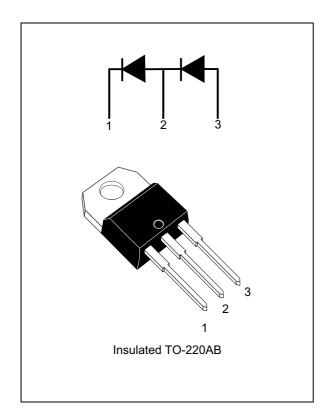
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STPSC8TH13TI

Dual 650 V power Schottky silicon carbide diode in series

Datasheet - production data

Description

The SiC diode is an ultrahigh performance power Schottky diode. It is manufactured using a silicon carbide substrate. The wide band gap material allows the design of a Schottky diode structure with a 650 V rating. Due to the Schottky construction, no recovery is shown at turn-off and ringing patterns are negligible. The minimal capacitive turn-off behavior is independent of temperature.

Especially suited for use in specific bridge-less topologies, this dual 650 V rectifier will boost the performance in hard switching conditions. Its high forward surge capability ensures a good robustness during transient phases.

Table 1. Device summary (per diode)

Symbol	Value
I _{F(AV)}	8 A
V_{RRM}	650 V
T _j (max.)	175 °C

Features

- No or negligible reverse recovery
- Switching behavior independent of temperature
- Suited for specific bridge-less topologies
- High forward surge capability
- Insulated package:
 - Capacitance: 7 pF
 - Insulated voltage: 2500 V rms

Characteristics STPSC8TH13TI

1 Characteristics

Table 2. Absolute ratings (limiting values at 25 °C unless otherwise specified, per diode)

Symbol	Par	Value	Unit	
V_{RRM}	Repetitive peak reverse voltage		650	V
I _{F(RMS)}	Forward rms current		22	Α
I _{F(AV)}	Average forward current $T_c = 85 {}^{\circ}C^{(1)}$, DC current		8	Α
Course was a section of	Surge pen repetitive forward	$t_p = 10$ ms sinusoidal, $T_c = 25$ °C	75	
I_{FSM}	Surge non repetitive forward current	$t_p = 10 \text{ ms sinusoidal}, T_c = 125 °C$	69	Α
	Carrent	$t_p = 10 \mu s \text{ sinusoidal}, T_c = 25 \text{ °C}$	420	
I _{FRM}	Repetitive peak forward current $T_c = 85 ^{\circ}C^{(1)}$, $\delta = 0.1$		33	Α
T _{stg}	Storage temperature range	-55 to +175	°C	
Tj	Operating junction temperature (-40 to +175	°C	

^{1.} Value based on $R_{th(j-c)}$ max (per diode)

Table 3. Thermal resistance

Symbol	Parameter		Тур.	Max.	Unit
D	Junction to case	Per diode	3.5	4.3	°C/W
R _{th(j-c)}	Junction to case	Total	1.95	2.35	C/VV
R _{th(c)}				0.4	°C/W

When the diodes are used simultaneously:

 $\Delta T_{j(diode1)} = P_{(diode1)} \times R_{th(j\text{-}c)} \text{ (per diode)} + P_{(diode2)} \times R_{th(c)}$

Table 4. Static electrical characteristics (per diode)

Symbol	Parameter	Tests conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Reverse leakage	T _j = 25 °C	V- - V	ı	7	80	μΑ
^{'R} current	T _j = 150 °C	$V_R = V_{RRM}$	-	65	335	μΛ	
V _F ⁽²⁾	Forward voltage drop	T _j = 25 °C	I _F = 8 A	-	1.56	1.75	V
V _F ⁽²⁾ Forward voltage drop	T _j = 150 °C	IF = 0 A	-	1.98	2.5	V	

^{1.} Pulse test: t_p = 10 ms, δ < 2%

To evaluate the conduction losses use the following equation:

$$P = 1.35 \times I_{F(AV)} + 0.144 \times I_{F^{2}(RMS)}$$

^{2.} $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

^{2.} Pulse test: t_p = 500 μ s, δ < 2%

STPSC8TH13TI Characteristics

Table 5. Dynamic electrical characteristics (per diode)

Symbol	Parameter	Test conditions	Тур.	Unit
Q _{cj} ⁽¹⁾	Total capacitive charge	V _R = 400 V	23.5	nC
C Total agracitores	V _R = 0 V, T _C = 25 °C, F = 1 MHz	414	pF	
C _j Total capacitance		$V_R = 400 \text{ V}, T_c = 25 \text{ °C}, F = 1 \text{ MHz}$	38	ы

1. Most accurate value for the capacitive charge: $Q_{cj} = \int_{0}^{V_{OUT}} c_{j}(v_{R}).dv_{R}$

Figure 1. Forward voltage drop versus forward current (typical values, low level, per diode)

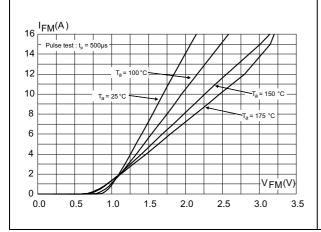


Figure 2. Forward voltage drop versus forward current (typical values, high level, per diode)

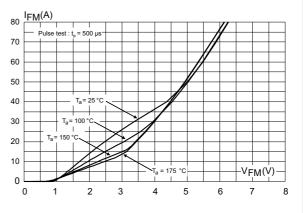


Figure 3. Reverse leakage current versus reverse voltage applied (typical values, per diode)

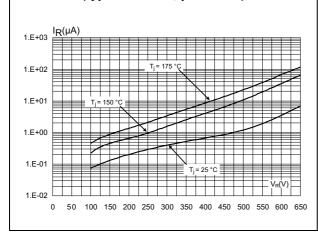
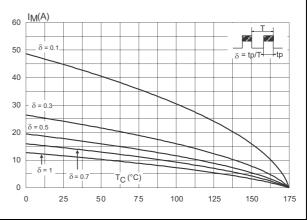



Figure 4. Peak forward current versus case temperature (per diode)

Characteristics STPSC8TH13TI

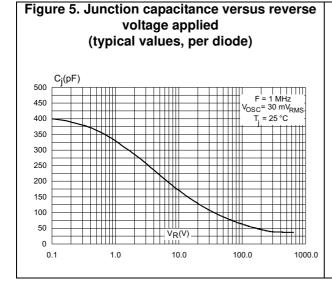
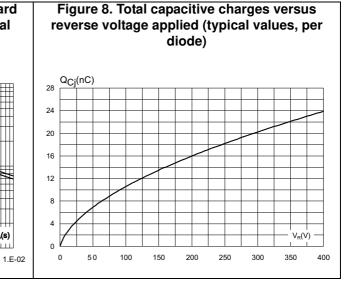


Figure 6. Relative variation of thermal impedance junction to case versus pulse duration $Z_{th(j-c)}/R_{th(j-c)}$ 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.0 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02


1.E-04

1.E-05

1.E-03

Figure 7. Non-repetitive peak surge forward

current versus pulse duration (sinusoidal

Package information 2

- Epoxy meets UL94, V0
- Lead-free package
- Cooling method: by conduction (C)
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Insulated TO-220AB package information 2.1

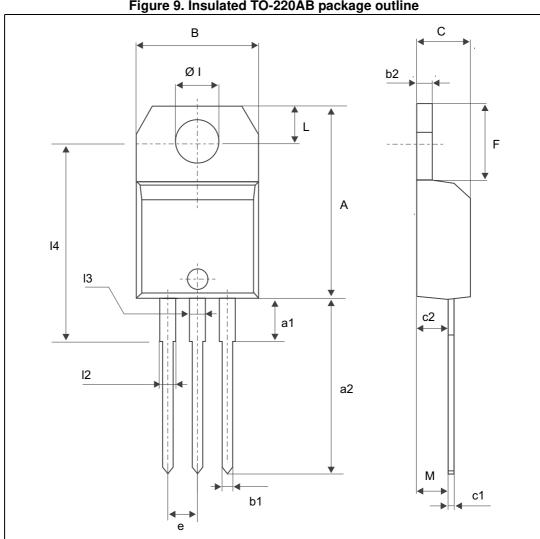


Figure 9. Insulated TO-220AB package outline

Package information STPSC8TH13TI

Table 6. Insulated TO-220AB package mechanical data

			Dime	nsions		
Ref.		Millimeters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	15.20		15.90	0.598		0.625
a1		3.75			0.147	
a2	13.00		14.00	0.511		0.551
В	10.00		10.40	0.393		0.409
b1	0.61		0.88	0.024		0.034
b2	1.23		1.32	0.048		0.051
С	4.40		4.60	0.173		0.181
c1	0.49		0.70	0.019		0.027
c2	2.40		2.72	0.094		0.107
е	2.40		2.70	0.094		0.106
F	6.20		6.60	0.244		0.259
ØI	3.75		3.85	0.147		0.151
14	15.80	16.40	16.80	0.622	0.646	0.661
L	2.65		2.95	0.104		0.116
12	1.14		1.70	0.044		0.066
13	1.14		1.70	0.044		0.066
М		2.60			0.102	

3 Ordering information

Table 7. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPSC8TH13TI	STPSC 8TH13TI	Insulated TO-220AB	2.3g	50	Tube

4 Revision history

Table 8. Document revision history

Date	Revision	Changes
24-Jun-2013	1	First issue.
07-Nov-2013	2	Updated Figure 1 and Figure 2.
05-Jan-2016 3		Updated <i>Table 7</i> . Format updated to current standard.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved