imall

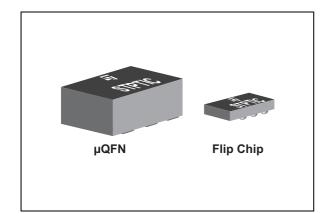
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STPTIC

Parascan[™] tunable integrated capacitor

Datasheet - production data

Features

- High power capability (+36 dBm)
- High tuning range (3.5/1)
- High quality factor (Q)
- High linearity device
- Low leakage current
- Capacitor bias is DC blocked
- Frequency of operation from DC to 3 GHz
- 8 values available: 1.2 pF, 2.7 pF, 3.3 pF, 3.9 pF, 4.7 pF, 5.6 pF, 6.8 pF and 8.2 pF
- Analog control voltage
- Compatible with high voltage control IC (STHVDAC series)
- Available in plastic molded package:
 - µQFN package 1.2 x 1.6 x 0.9 mm
 - Flip Chip 0.65 x 1.0 x 0.3 mm
 - Flip Chip 0.65 x 1.2 x 0.3 mm
- ECOPACK[®]2 compliant component

Benefit

 RF tunable passive implementation in mobile phones to optimize antenna radiated performances.

Applications

- Cellular Antenna open loop tunable matching network in multi-band GSM/WCDMA/LTE mobile phone
- Open loop tunable RF filters

Description

The ST integrated tunable capacitor, offers excellent RF performance, low power consumption and high linearity required in adaptive RF tuning applications. The fundamental building block of PTIC is a tunable material called Parascan, which is a version of barium strontium titanate (BST) developed by Paratek microwave.

BST capacitances are tunable capacitances intended for use in mobile phone application, and dedicated to RF tunable applications. These tunable capacitances are controlled through a bias voltage ranging from 2 to 20 V. The use of BST tunable capacitance in mobile phones enables significant improvement in terms of radiated performances making the performance almost insensitive to the external environment.

TM: Parascan is a trade mark of Paratek microwave Inc.

DocID023772 Rev 4

This is information on a product in full production.

1 Functional characteristics

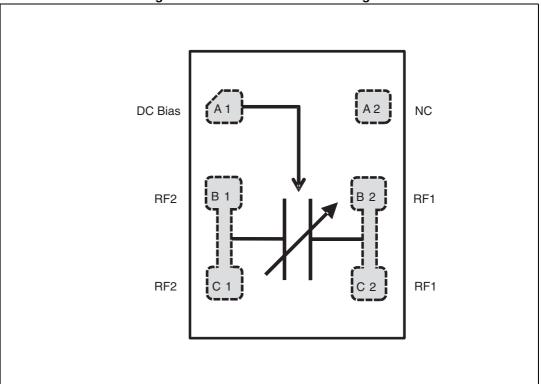


Figure 1. PTIC functional block diagram

Table 1. Signal descriptions

Ball/Pad number	Pin name	Description		
A1	DC BIAS	DC bias voltage		
B1	RF2	RF input / output		
C1	RF2 RF input / output			
A2	NC	Not connected		
B2	RF1 RF input / output			
C2	RF1 RF input / output			

2 Electrical characteristics

Symbol	Parameter	Rating	Unit	
P _{IN}	Input peak power RF _{IN} (CW mode)/all RF ports	+36	dBm	
		STPTIC-12	500	
		STPTIC-27	400 ⁽¹⁾	
V _{ESD(HBM)}	Human body model, JESD22-A114-B, all I/O	STPTIC-33	400 ⁽¹⁾	v
		STPTIC-39	500	
		STPTIC-47	500	
		STPTIC-56	500	
		STPTIC-68	500	
		STPTIC-82	500	
V _{ESD(MM)}	Machine model, JESD22-A114-B, all I/O		100	V
T _{device}	Device temperature		+125	°C
T _{stg}	Storage temperature		-55 to +150	C
V _x	Bias voltage		25	V

1. Currently failing around 400 V, improvement on going to withstand 500 V on 2p7 and 3p3.

Symbol	Parameter	Rating			Unit
	Parameter		Тур.	Max.	onit
	RF input power (50% duty cycle mode)				
P _{IN}	RF _{IN} (LB)			+35	dBm
	RF _{IN} (HB)			+33	
F _{OP}	Operating frequency	700		3000	MHz
T _{device}	Device temperature			+100	°C
T _{OP}	Operating temperature	ng temperature -30 +8		+85	
V _x	Bias voltage	2		20	V

Table 3. Recommended operating conditions

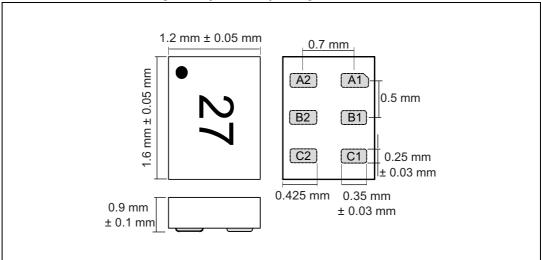
0h.e.l	Parameter		Value			11
Symbol		Conditions	Min	Тур	Max	Unit
		STPTIC-12	1.08	1.20	1.32	pF
		STPTIC-27	2.43	2.7	2.97	pF
		STPTIC-33	2.97	3.3	3.63	pF
C	Capacitance at 2V bias	STPTIC-39	3.51	3.9	4.29	pF
C _{2V}	Capacitarice at 2 V bias	STPTIC-47	4.23	4.7	5.17	pF
		STPTIC-56	5.04	5.6	6.16	pF
		STPTIC-68	6.12	6.8	7.48	pF
		STPTIC-82	7.38	8.2	9.02	
١L	Leakage current	Measured with $V_{bias} = 20 V$			100	nA
ΔC	Tuning range	Ratio between C_{2V}/C_{20V} measured at 100 kHz	3/1	3.5/1		
Q _{LB}	Quality factor	Measured at 900 MHz		65		
Q _{HB}	Quality factor	Measured at 1800 MHz		45		
IP3	Third order intercent point	$V_{bias} = 2 V^{(1)}$ and $^{(3)}$		60		dBm
IFS	Third order intercept point	V_{bias} = 20 $V^{(1)}$ and $^{(3)}$		70		dBm
H2	Second harmonic	V_{bias} = 2 $V^{(2)}$ and $^{(3)}$		-65		dBm
ΠΖ	Second narmonic	V_{bias} = 20 $V^{(2)}$ and $^{(3)}$		-65		dBm
H3	Third harmonic	V_{bias} = 2 V ⁽²⁾ and ⁽³⁾		-45		dBm
115		V_{bias} = 20 $V^{(2)}$ and $^{(3)}$		-45		dBm
+_	Transition time	From C_{min} to C_{max} ⁽⁴⁾		135		μs
t _T	Transition time	From C_{max} to $C_{min}^{(4)}$		100		μs

Table 4. Representative performances (T_{amb} = 25 °C)

1. $F_1 = 894 \text{ MHz}, F_2 = 849 \text{ MHz}, P_1 = 20 \text{ dBm}, P_2 = -15 \text{ dBm}, 2f_1 - f_2 = 939 \text{ MHz}$

2. 894 MHz, P_{in} = 34 dBm

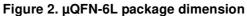
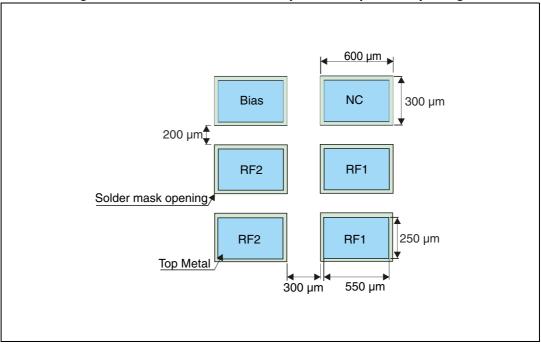
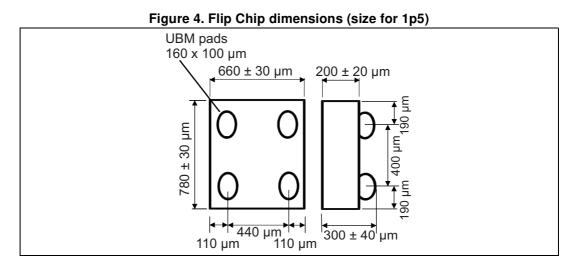
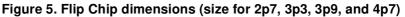
3. IP3 and harmonics are measured in the shunt/series configuration in a 50 Ω environment

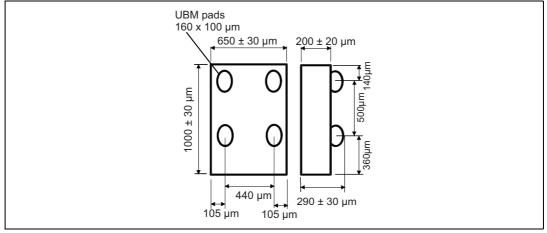

4. One or both of ${\sf RF}_{\sf in}$ and ${\sf RF}_{\sf out}$ must be connected to DC ground

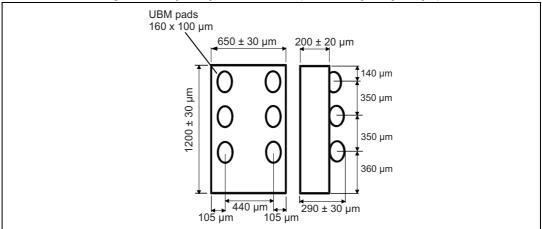
3 Package information

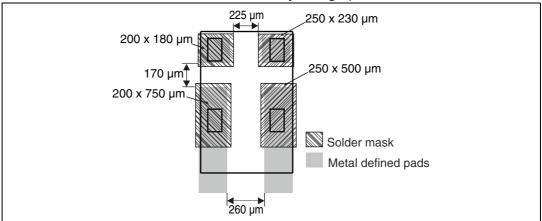
- Epoxy meets UL94, V0
- Lead-free package

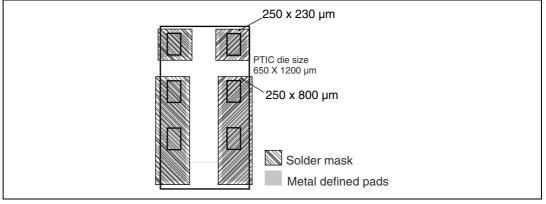
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

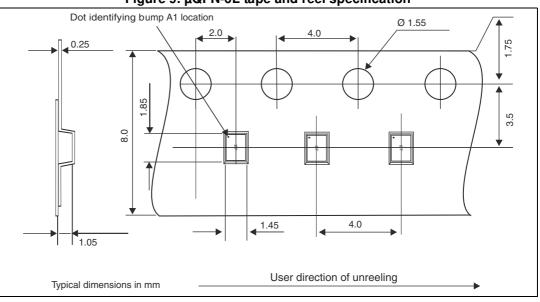





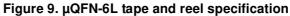

Figure 3. Recommended PCB land pattern for µQFN-6L package










Figure 7. Recommended PCB land pattern for Flip Chip package (metal defined pads, solder mask 25 µm larger)

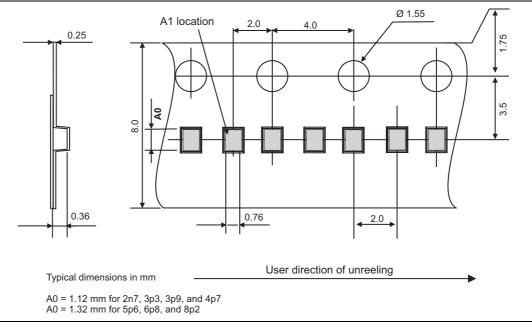
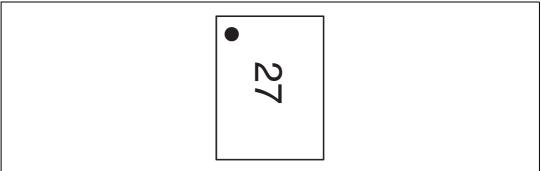
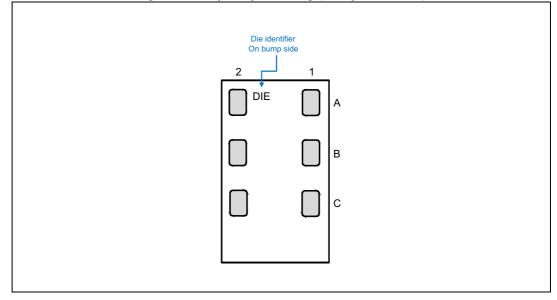




Figure 11. µQFN marking

Figure 12. Flip Chip marking (bump side view)

4 Reflow profile

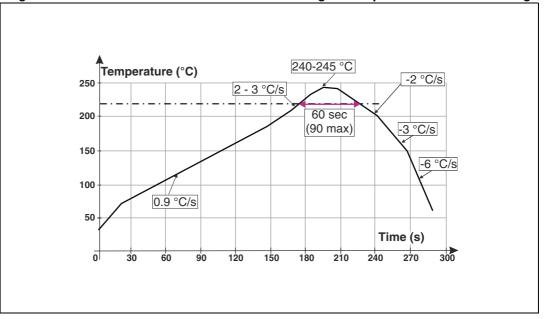
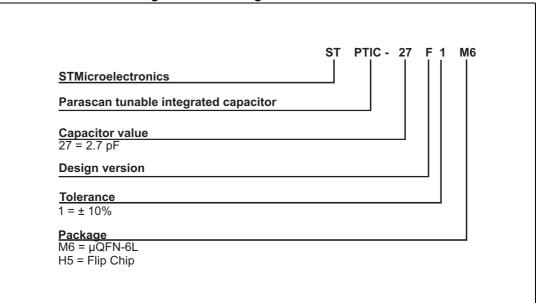


Figure 13. ST ECOPACK[®] recommended soldering reflow profile for PCB mounting


Minimize air convection currents in the reflow oven to avoid component movement.

Ducfile	Value			
Profile	Typical	Max.		
Temperature gradient in preheat (T = 70-180 °C)	0.9 °C/s	3 °C/s		
Temperature gradient (T = 200-225 °C)	2 °C/s	3 °C/s		
Peak temperature in reflow	240-245 °C	260 °C		
Time above 220 °C	60 s	90 s		
Temperature gradient in cooling	-2 to -3 °C/s	-6 °C/s		
Time from 50 to 220 °C 160 to 220 s		220 s		

Table 5. Recommended values for soldering reflow

5 Ordering information

Figure 14. Ordering information scheme

Table 6. Ordering information

Part Number	Marking	Weight	Base Qty	Delivery Mode
STPTIC-12F1M6	12	4.8 mg	3000	Tape and reel
STPTIC-27F1M6	27	4.8 mg	3000	Tape and reel
STPTIC-33F1M6	33	4.8 mg	3000	Tape and reel
STPTIC-39F1M6	39	4.8 mg	3000	Tape and reel
STPTIC-47F1M6	47	4.8 mg	3000	Tape and reel
STPTIC-56F1M6	56	4.8 mg	3000	Tape and reel
STPTIC-68F1M6	68	4.8 mg	3000	Tape and reel
STPTIC-82F1M6	82	4.8 mg	3000	Tape and reel
STPTIC-12G1H5	TBD	0.7 mg	15000	Tape and reel
STPTIC-27G1H5	l1x	0.7 mg	15000	Tape and reel
STPTIC-33G1H5	I3x	0.7 mg	15000	Tape and reel
STPTIC-39G1H5	l2x	0.7 mg	15000	Tape and reel
STPTIC-47G1H5	I5x	0.7 mg	15000	Tape and reel
STPTIC-56G1H5	l4x	0.7 mg	15000	Tape and reel
STPTIC-68G1H5	l7x	0.7 mg	15000	Tape and reel
STPTIC-82G1H5	l6x	0.7 mg	15000	Tape and reel

6 Revision history

· · · · · · · · · · · · · · · · · · ·			
Date	Revision	Changes	
02-Nov-2012	1	Initial release.	
03-Jul-2013	2	Removed 6-pad 650 x 1000 Flip-Chip package.	
10-Jan-2014	3	updated: <i>Features</i> , <i>Table 2</i> , <i>Table 4</i> , <i>Table 6</i> and added new <i>Figure 4</i> .	
13-Feb-2014	4	Updated Applications.	

Table 7. Document revision history

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

DocID023772 Rev 4