

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

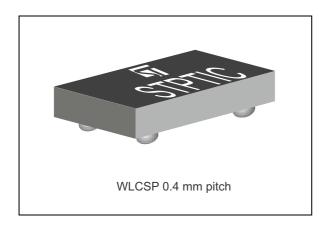
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STPTIC-68G2

Parascan™ tunable integrated capacitor

Datasheet - production data

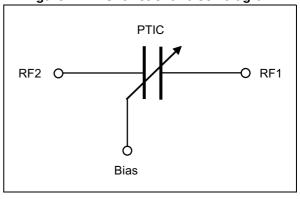
Features

- · High power capability
- 5:1 tuning range
- High linearity
- High quality factor (Q)
- Low leakage current
- Compatible with high voltage control IC (STHVDAC series)
- Available in wafer level chip scale package:
 - WLCSP package 0.6 x 0.8 x 0.3 mm
- ECOPACK®2 compliant component

Benefit

 RF tunable passive implementation in mobile phones to optimize antenna radiated performance

Applications


- Cellular antenna open loop tunable matching network in multi-band GSM/WCDMA/LTE mobile phone
- Open loop tunable RF filters

Description

The ST integrated tunable capacitor offers excellent RF performance, low power consumption and high linearity required in adaptive RF tuning applications. The fundamental building block of PTIC is a tunable material called Parascan™, which is a version of barium strontium titanate (BST) developed by Paratek microwave.

BST capacitors are tunable capacitors intended for use in mobile phone application and dedicated to RF tunable applications. These tunable capacitors are controlled through an extended bias voltage ranging from 1 to 24 V. The implementation of BST tunable capacitor in mobile phones enables significant improvement in terms of radiated performance making the performance almost insensitive to the external environment.

Figure 1. PTIC functional block diagram

TM: Parascan is a trademark of Paratek Microwave Inc.

Electrical characteristics STPTIC-68G2

1 Electrical characteristics

Table 1. Absolute maximum ratings (limiting values)

Symbol	Parameter	Rating	Unit
P _{IN}	Input peak power RF _{IN} (CW mode)/all RF ports	+40	dBm
V _{ESD(HBM)}	Human body model, JESD22-A114-B, all I/O	Class 1B ⁽¹⁾	V
V _{ESD(MM)}	Machine model, JESD22-A115-A, all I/O	100	V
T _{device}	Device temperature	+125	°C
T _{stg}	Storage temperature	-55 to +150	
V _x	Bias voltage	25	V

^{1.} Class 1B defined as passing 500 V, but fails after exposure to 1000V ESD pulse.

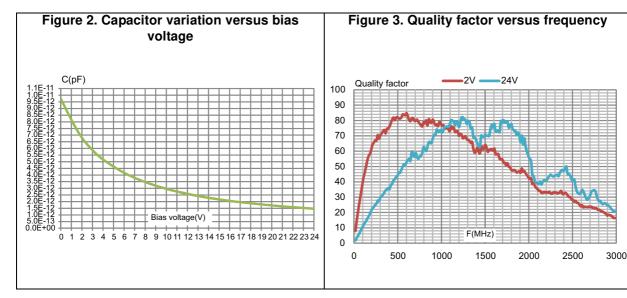
Table 2. Recommended operating conditions

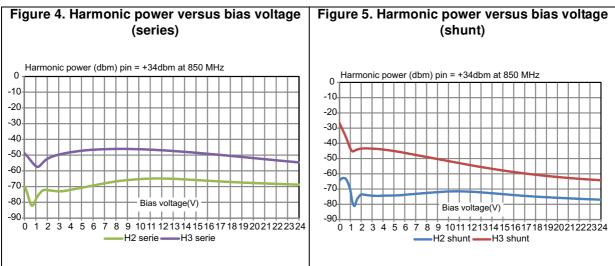
Symbol	Parameter	Rating		Rating			Unit
	Farameter	Min.	Тур. Мах.	Max.	Oill		
P _{IN}	RF input power		+33		dBm		
F _{OP}	Operating frequency	700		2700	MHz		
T _{device}	Device temperature			+100	°C		
T _{OP}	Operating temperature	-30		+85			
V _{BIAS}	Bias voltage	1		24	V		

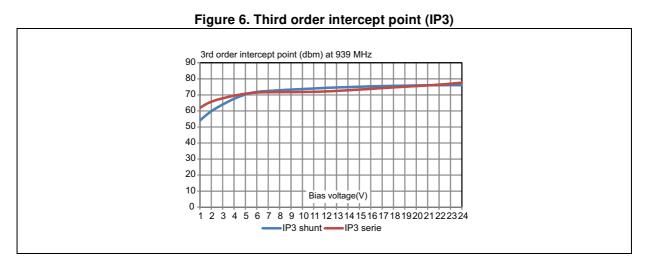
Table 3. Representative performance (T_{amb} = 25 °C otherwise specified)

Cumbal	Devemeter	Conditions		7.		Unit
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{1V}	capacitor at 1 V bias	STPTIC-68G2	6.86	7.8	8.74	pF
C _{2V}	capacitor at 2 V bias	STPTIC-68G2		6.8		pF
C _{24V}	capacitor at 24 V bias	STPTIC-68G2	1.24	1.35	1.46	pF
ΔC	Tuning range	Ratio between C _{1V} /C _{24V} ⁽¹⁾	5/1			
ΙL	Leakage current	Measured with V _{bias} = 24 V			100	nA
Q _{LB}	Quality factor	Measured at 700 MHz at 2 V	55	65		
Q _{HB}	Quality factor	Measured at 2700 MHz at 2 V	35	50		
IP3	Third order intercept point	$V_{\text{bias}} = 1 V^{(2)(4)}$	52	60		dBm
IF 3	Trilla order intercept point	V _{bias} = 24 V ⁽²⁾⁽⁴⁾		75		UDIII
H2	Second harmonic	$V_{\text{bias}} = 1 V^{(3)(4)}$		-65	-45	dBm
112	Second Harmonic	V _{bias} = 24 V ⁽³⁾⁽⁴⁾		-75		UDIII
H3 Third harmonic		$V_{\text{bias}} = 1 V^{(3)(4)}$		-35	-30	dBm
Н3	Trilla riarrioriic	V _{bias} = 24 V ⁽³⁾⁽⁴⁾		-65		UDIII
+	Transition time	Average for any transition between C _{min} to C _{max} ⁽⁵⁾		40		116
t _T	Transidor diffe	Average transition between C _{max} to C _{min} ⁽⁵⁾		20		μs

^{1.} Measured at low frequency


^{2.} F_1 = 894 MHz, F_2 = 849 MHz, P_1 = +25 dBm, P_2 = +25 dBm, $2f_1$ - f_2 = 939 MHz


^{3. 850} MHz, P_{in} = +34 dBm


^{4.} IP3 and harmonics are measured in the shunt configuration in a 50 $\boldsymbol{\Omega}$ environment

^{5.} One or both of ${\rm RF_{in}}$ and ${\rm RF_{out}}$ must be connected to DC ground, using the HVDAC turbo mode

Electrical characteristics STPTIC-68G2

STPTIC-68G2 Package information

2 Package information

- Epoxy meets UL94, V0
- Lead-free package

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

2.1 Flip-Chip package information

Bottom view Top view Side view (balls dow) (balls up) C2 A2 D3 D2 D1 В1 BIAS E1 B2 Α1 `E2 **B**4 C2 **⊳**|C1 NC1 <

Figure 7. Flip-Chip package outline

The land pattern below is recommended for soldering the STPTIC-G2 on PCB.

NC stands for No Connect, this pad must not be connected on application board. Please leave this pad floating.

A2 Dimensions (micron) Α1 **B**1 **B2 B**4 C1 C2 D1 D2 D3 **E**1 **E2** STPTIC-15/27/33/39/47G2 640 120 STPTIC-56G2 710 190 590 400 120 85 420 200 90 290 125 165 260 STPTIC-68G2 780 STPTIC-82G2 880 360 Tolerance ±30 ±30 ±15 ±10 ±15 ±15 ±10 ±20 ±20 ±40 ±20 ±20

Table 4. Flip-Chip package dimensions

Package information STPTIC-68G2

X1 Copper—→ W1 L2 L1 L3 X2 Soldermask opening (25 μm) largeur than copper

Figure 8. Recommended PCB land pattern for Flip-Chip package

Table 5. Dimensions

Dimensions	L1	W1	L3	L2	W2	L4	X1	X2	Y1	Y2
Typical values (micron)	160	160	260	210	210	310	320	270	240	190

Packing information 2.2

Figure 9. Flip-Chip tape and reel outline

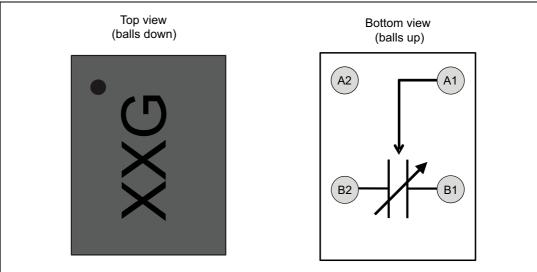
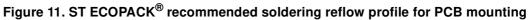


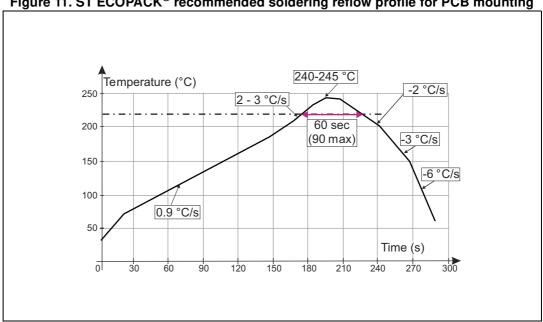
Table 6. Dimensions

Pocket dimensions	L	W	Н
STPTIC-15/27/33/39/47G2	730	680	380
STPTIC-56G2	800	680	380
STPTIC-68G2	870	680	380
STPTIC-82G2	970	680	380

STPTIC-68G2 Package information

Figure 10. Flip-Chip marking


Table 7. Pinout description

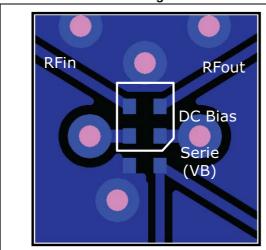

Pad / ball number	Pin name	Description
A1	DC bias	DC bias voltage
B1	RF2	RF input / output ⁽¹⁾
A2	NC	Not connected
B2	RF1	RF input / output

^{1.} When connected in shunt, please connect RF2 (B1 ball) to GND

Reflow profile STPTIC-68G2

3 **Reflow profile**

Note: Minimize air convection currents in the reflow oven to avoid component movement.


Table 8. Recommended values for soldering reflow

Profile	Value			
Fiolile	Typical	Max.		
Temperature gradient in preheat (T = 70-180 °C)	0.9 °C/s	3 °C/s		
Temperature gradient (T = 200-225 °C)	2 °C/s	3 °C/s		
Peak temperature in reflow	240-245 °C	260 °C		
Time above 220 °C	60 s	90 s		
Temperature gradient in cooling	-2 to -3 °C/s	-6 °C/s		
Time from 50 to 220 °C	160 to	220 s		

STPTIC-68G2 Evaluation board

4 Evaluation board

Figure 12. Series and shunt connection

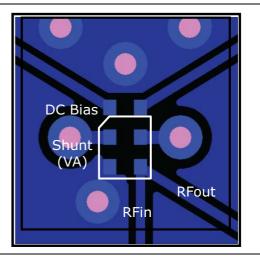
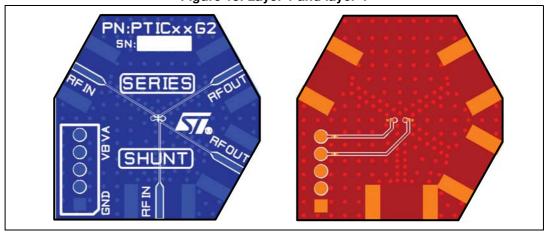
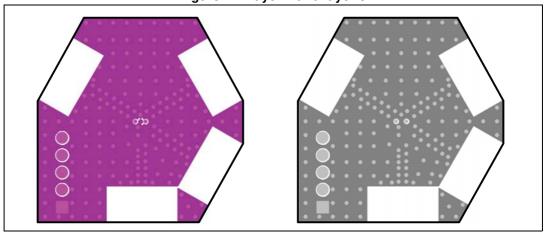
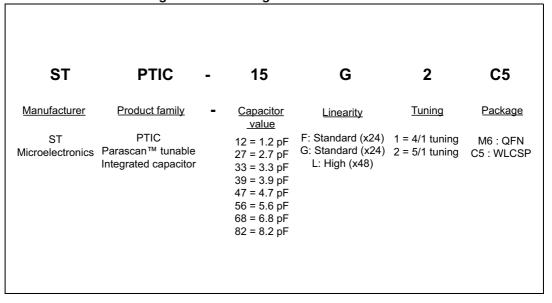


Figure 13. Layer 1 and layer 4


Figure 14. Layer 2 and layer 3

Ordering information STPTIC-68G2

5 Ordering information

Figure 15. Ordering information scheme

Table 9. Ordering information

Part number	Marking	Base qty	Package	Delivery mode
STPTIC-68G2C5	68G	15 000	Flip-Chip	Tape and reel

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
09-Jul-2015	1	Initial release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

