mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STS4DPF30L

DUAL P-CHANNEL 30V - 0.07 Ω - 4A SO-8 STripFET[™] POWER MOSFET

PRELIMINARY DATA

TYPE	V _{DSS}	R _{DS(on)}	ID
STS4DPF30L	30 V	<0.08 Ω	4 A

- TYPICAL R_{DS}(on) = 0.07 Ω
- STANDARD OUTLINE FOR EASY AUTOMATED SURFACE MOUNT ASSEMBLY
- LOW THRESHOLD DRIVE

DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronis unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low onresistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

APPLICATIONS

- BATTERY MANAGEMENT IN NOMADIC EQUIPMENT
- POWER MANAGEMENT IN CELLULAR PHONES
- DC-DC CONVERTER

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	30	V
V _{GS}	Gate- source Voltage	± 16	V
la.	Drain Current (continuous) at T _C = 25°C Single Op	peration 4	Α
U	Drain Current (continuous) at T _C = 100°C Single C	Operation 2.5	A
I _{DM} (●)	Drain Current (pulsed)	16	А
D.	Total Dissipation at $T_C = 25^{\circ}C$ Dual Operation	2.0	W
r tot	Total Dissipation at T_{C} = 25°C Single Operation	1.6	W
(•) Pulse wid	th limited by safe operating area.	Note: For the P-CHANNEL MOSFET actual polarit	y of voltages and

current has to be reversed

April 2002

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

STS4DPF30L

THERMAL DATA

Rthj-amb	(*)Thermal Resistance Junction-ambient	Single Operation	78	°C/W
		Dual Operating	62.5	°C/W
Тj	Thermal Operating Junction-ambient		-55 to150	°C
T _{stg}	Storage Temperature		-55 to 150	°C

(*) When Mounted on 1 inch² FR-4 board, 2 oz of Cu and t \leq 10 sec.

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _(BR) DSS	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T _C = 125°C			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			±100	nA

ON (*)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V V _{GS} = 4.5 V	I _D = 2 A I _D = 2 A		0.070 0.085	0.08 0.10	Ω Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V_{DS} = 15V I_D = 2 A		10		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V_{DS} = 25V, f = 1 MHz, V_{GS} = 0		1350 490 130		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			25 35		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = 24 V I _D = 4 A V _{GS} = 5 V (See test circuit, Figure 2)		12.5 5 3	16	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time			125 35		ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)				4 16	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 4 A$ $V_{GS} = 0$			1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} &= 4 \text{ A} & \text{di/dt} = 100 \text{A}/\mu\text{s} \\ V_{DD} &= 15 \text{ V} & T_j = 150^\circ\text{C} \\ (\text{See test circuit, Figure 3}) \end{split}$		45 36 1.6		ns nC A

(*)Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %.
(•)Pulse width limited by safe operating area.

57

STS4DPF30L

Fig. 1: Switching Times Test Circuits For Resistive Load

Fig. 3: Test Circuit For Diode Recovery Behaviour

Fig. 2: Gate Charge test Circuit

57

ЫМ		mm		inch				
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А			1.75			0.068		
a1	0.1		0.25	0.003		0.009		
a2			1.65			0.064		
a3	0.65		0.85	0.025		0.033		
b	0.35		0.48	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.019		
c1			45 ((typ.)				
D	4.8		5.0	0.188		0.196		
E	5.8		6.2	0.228		0.244		
е		1.27			0.050			
e3		3.81			0.150			
F	3.8		4.0	0.14		0.157		
L	0.4		1.27	0.015		0.050		
М			0.6			0.023		
S		8 (max.)						

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics (B) 2002 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

6/6

