

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

N-channel 100 V, 0.065 Ω typ., 4 A STripFET™ II Power MOSFET in SO-8 package

Datasheet - production data

Features

Order code	V _{DS}	R _{DS(on)} max	I _D	
STS4NF100	100 V	0.070 Ω	4 A	

- Exceptional dv/dt capability
- 100 % avalanche tested
- Application oriented characterization

Applications

■ Switching applications

Description

This Power MOSFET has been developed using STMicroelectronics' unique STripFET process, which is specifically designed to minimize input capacitance and gate charge. This renders the device suitable for use as primary switch in advanced high-efficiency isolated DC-DC converters for telecom and computer applications, and applications with low gate charge driving requirements.

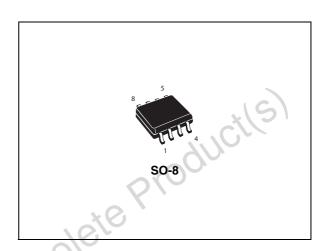


Figure 1. Internal schematic diagram

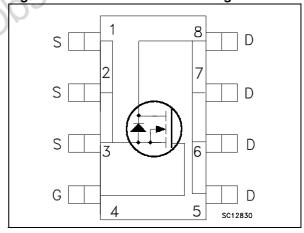


Table 1. Device summary

Order code	Marking	Package	Packaging	
STS4NF100	4NF100	SO-8	Tape and reel	

Contents STS4NF100

Contents

1	Electrical ratings
2	Electrical characteristics4
	2.1 Electrical characteristics (curves)
3	Test circuit 8
4	Package mechanical data
5	Revision history
0050	Electrical characteristics

STS4NF100 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source voltage	100	V
V _{GS}	Gate- source voltage	±20	V
I _D	Drain current (continuous) at T _C = 25°C	4	Α
I _D	Drain current (continuous) at T _C = 100°C	2.5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	16	Α
P _{TOT}	Total dissipation at T _{amb} = 25°C	2.5	W
T _J	Max. operating junction temperature	-55 to 150	°C
T _{stg}	Storage temperature	-55 to 150	°C

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-a}	Thermal resistance junction-ambient max (1)	50	°C/W

^{1.} Mounted on FR-4 board (t 10 sec.)

Electrical characteristics STS4NF100

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0$	100			V
1	Zero gate voltage	V _{DS} = 100 V			1	μA
I _{DSS}	drain current (V _{GS} = 0)	V _{DS} = 100 V, T _C =125 °C			10	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V		(±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 2 A	Oyo	0.065	0.070	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽¹⁾	Forward transconductance	$V_{DS} > I_{D(on)} x R_{DS(on)max}$ $I_D = 2 A$	1	10		S
C _{iss}	Input capacitance		-	870		pF
C _{oss}	Output capacitance	$V_{DS} = 25 \text{ V, f} = 1 \text{ MHz,}$	-	125		pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	52		pF
Qg	Total gate charge		-	30	41	nC
Q_{gs}	Gate-source charge	$V_{DD} = 80 \text{ V}, I_{D} = 4 \text{ A},$ $V_{GS} = 10 \text{ V}$	-	6		nC
Q_{gd}	Gate-drain charge	- GS = 10 T	-	10		nC

^{1.} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time rise time	V_{DD} =50 V, I_{D} =4 A, R_{G} =4.7 Ω , V_{GS} = 10 V (see <i>Figure 14</i>)	-	58 45	-	ns ns
t _{d(off)}	Turn-off delay time fall time	V_{DD} = 50 V, I_D = 4 A R_G =4.7 Ω , V_{GS} = 10 V (see <i>Figure 14</i>)	-	49 17	-	ns ns

Table 7. Source drain diode

	Symbol	Parameter	Test conditions	Min	Тур.	Max.	Unit
	I _{SD}	Source-drain current		-		4	Α
	I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		16	Α
	V _{SD} (2)	Forward on voltage	I _{SD} = 4 A, V _{GS} = 0	-		1.2	V
	t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 4 \text{ A}, V_{DD} = 30 \text{ V}$ di/dt = 100 A/ μ s, $T_j = 150 ^{\circ}\text{C}$ (see <i>Figure 15</i>)	-	100 375 7.5		ns nC A
005018	1. Pulse wid 2. Pulsed: F	Reverse recovery current oth limited by safe operating area. Pulse duration = 300 µs, duty cycle 1.5	%	YOU	3U		

Electrical characteristics STS4NF100

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

Figure 3. Thermal impedance

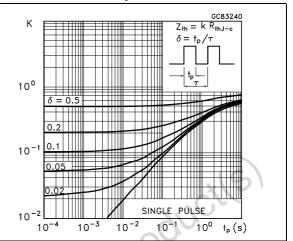


Figure 4. Output characterisics

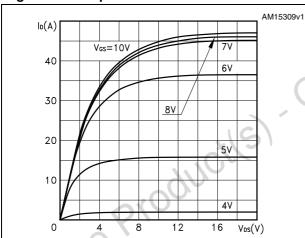


Figure 5. Transfer characteristics

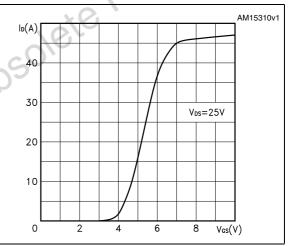


Figure 6. Transconductance

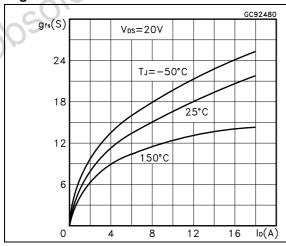
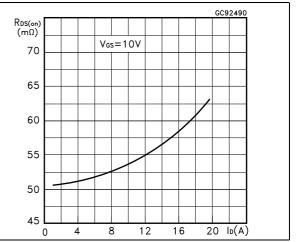



Figure 7. Static drain-source on-resistance

AM15312v1

Vgs(V)

Vgs=80V

Ip=4A

12

9

6

3

C(pF)

Ciss

Goos

AM15313v1

C(pF)

1200

Coss

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Q_g(nC)

Figure 10. Normalized gate threshold voltage vs temperature

16

24

Figure 11. Normalized on-resistance vs temperature

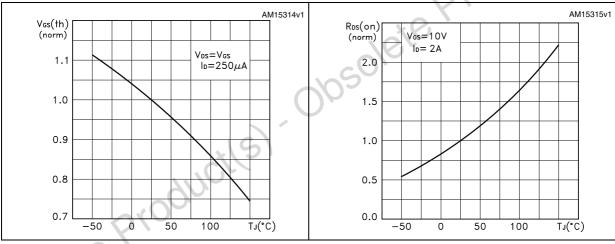
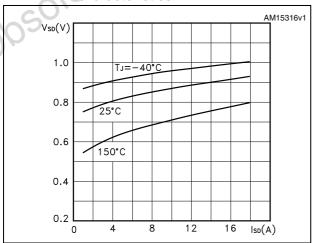



Figure 12. Source-drain diode forward characteristics

Test circuit STS4NF100

3 Test circuit

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

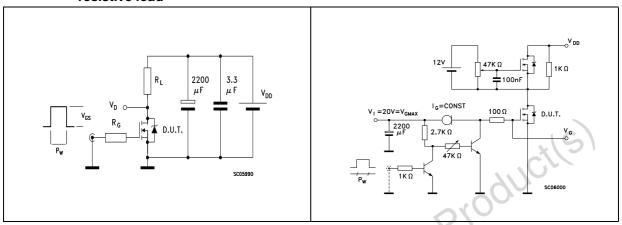


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped Inductive load test circuit

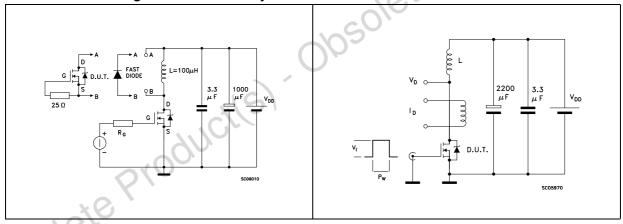
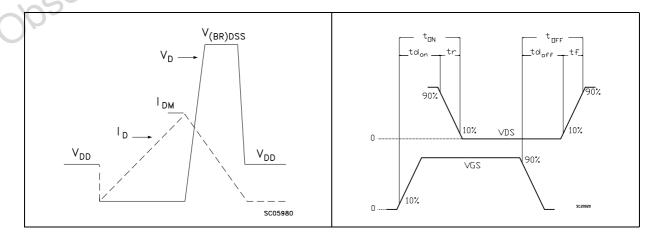



Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Obsolete Product(s). Obsolete Product(s)

Table 8. SO-8 mechanical data

Dim.		mm					
Dim.	Min.	Тур.	Max.				
Α			1.75				
A1	0.10		0.25				
A2	1.25						
b	0.31		0.51				
b1	0.28		0.48				
С	0.10		0.25				
c1	0.10		0.23				
D	4.80	4.90	5.00				
E	5.80	6.00	6.20				
E1	3.80	3.90	4.00				
е		1.27					
h	0.25	76/	0.50				
L	0.40	°CO,	1.27				
L1		1.04					
L2		0.25					
k	0°		8°				
ccc			0.10				

Figure 19. SO-8 drawing

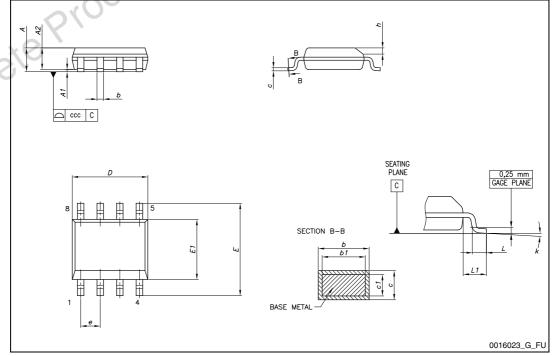
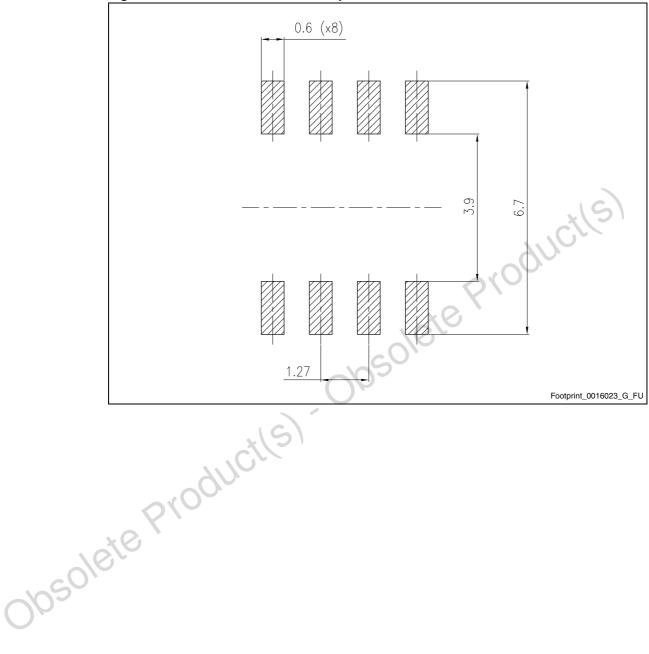



Figure 20. SO-8 recommended footprint^(a)

a. All dimensions are in millimeters.

Revision history STS4NF100

5 Revision history

Table 9. Revision history

	Date	Revision	Changes
	11-Sep-2006	1	First release
	15-Nov-2006	2	The document has been reformatted
	26-Jan-2007	3	Typo mistake on <i>Table 3</i> .
	19-Nov-2012	4	Changed: marking in cover page
900	is Pro	Aucil!	Changed: marking in cover page

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

