

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual N-channel 30 V, 0.017 Ω typ., 8 A, STripFET™ II Power MOSFET in a SO-8 package

Datasheet - production data

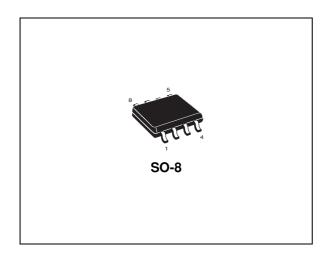
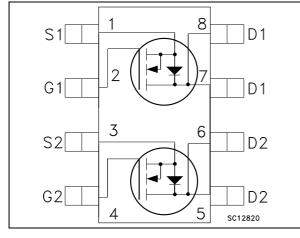



Figure 1. Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	I _D
STS8DNF3LL	30 V	$0.020~\Omega$	8 A

- Optimal R_{DS(on)} x Q_g trade-off @ 4.5 V
- · Conduction losses reduced
- Switching losses reduced

Applications

· Switching applications

Description

This Power MOSFET has been developed using STMicroelectronics' unique STripFET process, which is specifically designed to minimize input capacitance and gate charge. This renders the device suitable for use as primary switch in advanced high-efficiency isolated DC-DC converters for telecom and computer applications, and applications with low gate charge driving requirements.

Table 1. Device summary

Order code	Marking	Package	Packaging
STS8DNF3LL	TS8DNF3LL 8DF3LL		Tape and reel

Contents STS8DNF3LL

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuit	8
4	Package mechanical data	9
5	Packaging mechanical data	1
6	Revision history	3

STS8DNF3LL Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	30	V
V _{GS}	Gate- source voltage	±16	V
I _D	Drain current (continuous) at T _C = 25 °C single operating	8	Α
I _D	Drain current (continuous) at T _C = 100 °C single operating	5	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	32	Α
P _{TOT}	Total dissipation at T_C = 25 °C dual operating Total dissipation at T_C = 25 °C single operating	2 1.6	W W

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-amb} ⁽¹⁾	Thermal resistance junction-ambient single operating	78	°C/W
- tilj-allib	Thermal resistance junction-ambient dual operating	62.5	°C/W
T_J	Thermal operating junction-ambient	150	°C
T _{stg}	Storage temperature	-55 to 150	°C

^{1.} Mounted on FR-4 board with 0.5 in² pad of Cu

Electrical characteristics STS8DNF3LL

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0$	30			V
1	Zero gate voltage	V _{DS} = 30 V			1	μΑ
I _{DSS}	Drain current (V _{GS} = 0)	V _{DS} =30 V, T _C =125°C			10	μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 16 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1			V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$ $V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$		0.017 0.020	0.020 0.024	W W

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15 V, I _D = 4 A	-	12.5		S
C _{iss}	Input capacitance		-	800		pF
Coss	Output capacitance	V _{DS} = 25 V, f = 1 MHz,	-	250		pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0	-	60		pF
Qg	Total gate charge	V _{DD} = 15 V, I _D = 8 A,	-	12.5	17	nC
Q _{gs}	Gate-source charge	V _{GS} = 5 V	-	3.2		nC
Q _{gd}	Gate-drain charge	(see Figure 15)	-	4.5		nC

^{1.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5.

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} =15 V, I _D =4 A,	-	18	-	ns
t _r	Rise time	$R_G=4.7\Omega$, $V_{GS}=4.5V$ (see <i>Figure 14</i>)	-	32	-	ns
t _{d(off)}	Turn-off delay time	V _{DD} =15 V, I _D =4A,	-	21	-	ns
t _f	Fall time	R_G =4.7 Ω , V_{GS} = 4.5 V (see <i>Figure 14</i>)	-	11	1	ns

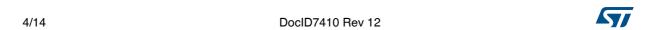


Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit
I _{SD}	Source-drain current		-		8	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		32	Α
V _{SD} (2)	Forward on voltage	I _{SD} = 8 A, V _{GS} = 0	-		1.2	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 8 \text{ A}, V_{DD} = 15 \text{ V}$ di/dt = 100 A/ μ s, $T_j = 150 ^{\circ}\text{C}$ (see <i>Figure 16</i>)	-	23 17 1.5		ns nC A

^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%

Electrical characteristics STS8DNF3LL

Electrical characteristics (curves) 2.1

Figure 2. Safe operating area

lo(A) 10¹,

Figure 3. Thermal impedance

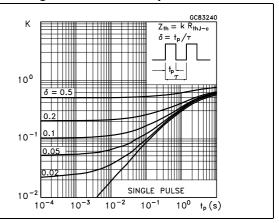


Figure 4. Output characteristics

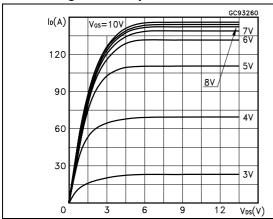


Figure 5. Transfer characteristics

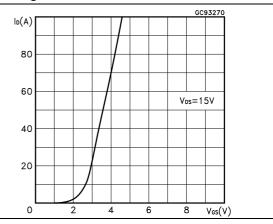


Figure 6. Transconductance

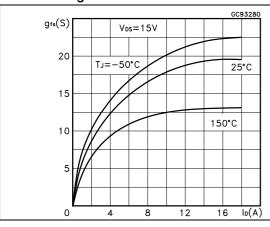
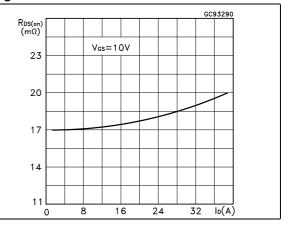



Figure 7. Static drain-source on-resistance

DocID7410 Rev 12 6/14

Figure 8. Gate charge vs. gate-source voltage

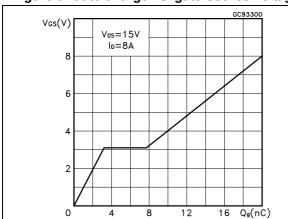


Figure 9. Capacitance variations

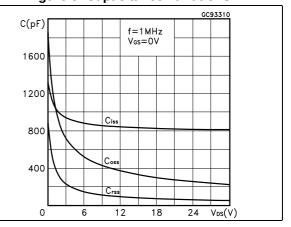


Figure 10. Normalized gate threshold voltage vs. temperature

Figure 11. Normalized on-resistance vs. temperature

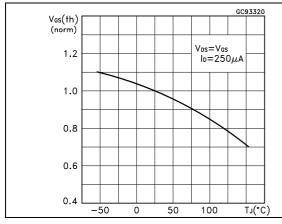
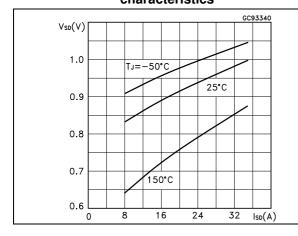
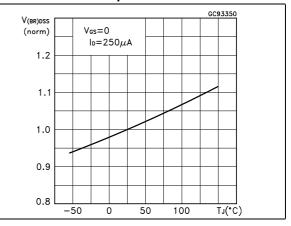




Figure 12. Source-drain diode forward characteristics

Figure 13. Normalized breakdown voltage vs. temperature

Test circuit STS8DNF3LL

3 Test circuit

Figure 14. Switching times test circuit for resistive load

Figure 15. Gate charge test circuit

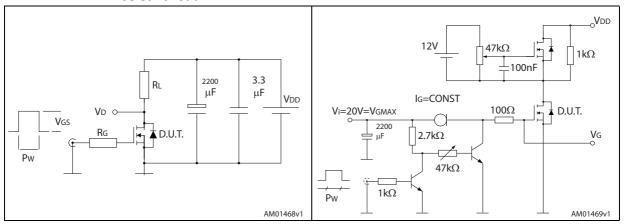


Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 17. Unclamped Inductive load test circuit

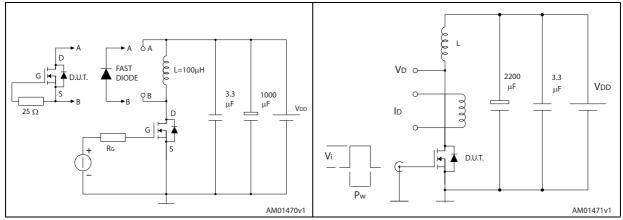
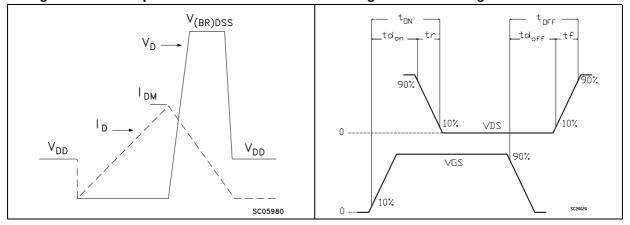



Figure 18. Unclamped inductive waveform

Figure 19. Switching time waveform

57

4 Package mechanical data

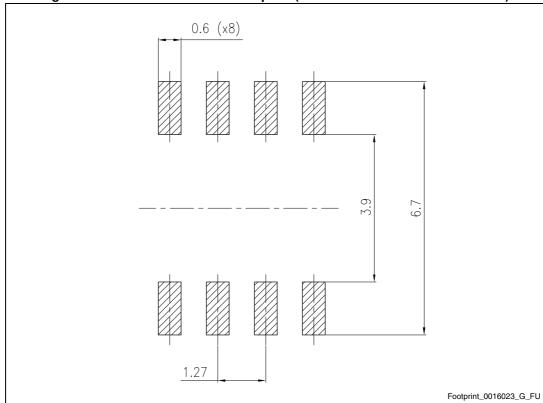
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Table 8. SO-8 mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А			1.75
A1	0.10		0.25
A2	1.25		
b	0.31		0.51
b1	0.28		0.48
С	0.10		0.25
c1	0.10		0.23
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
L2		0.25	
k	0°		8°
ccc			0.10

SECTION B-B

SECTION B-B


SECTION B-B

SECTION B-B

OU16023_G_FU

Figure 20. SO-8 drawing

5 Packaging mechanical data

Table 9. SO-8 tape and reel mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α			330
С	12.8		13.2
D	20.2		
N	60		
Т			22.4
Ao	8.1		8.5
Во	5.5		5.9
Ko	2.1		2.3
Po	3.9		4.1
Р	7.9		8.1

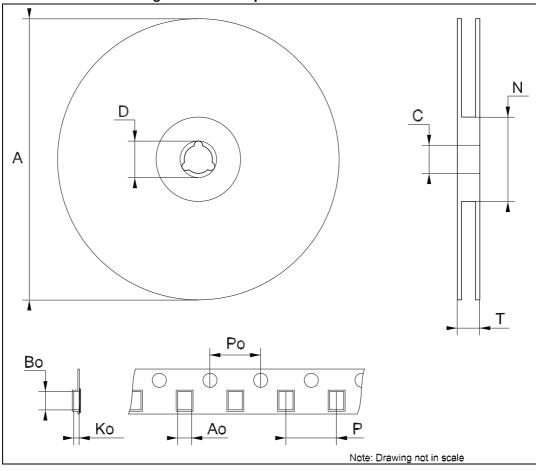


Figure 22. SO-8 tape and reel dimensions

\7/

STS8DNF3LL Revision history

6 Revision history

Table 10. Revision history

Date	Revision	Changes
11-Sep-2006	8	Complete document
15-Nov-2006	9	The document has been reformatted
30-Jan-2007	10	Typo mistake on <i>Table 2</i>
14-Dec-2012	11	- Typo mistake on <i>Table 2</i> - Updated: <i>Section 4: Package mechanical data</i>
22-Jul-2013	12	Updated <i>Table 1: Device summary</i>.Minor text changes.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

477

14/14 DocID7410 Rev 12