

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

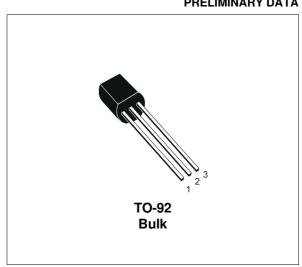
STSA1805

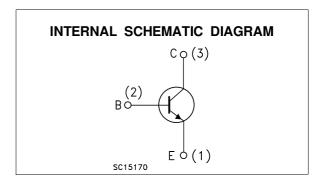
LOW VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

PRELIMINARY DATA

Ordering Code	Marking	Package / Shipment		
STSA1805	SA1805	TO-92 / Bulk		
STSA1805-AP	SA1805	TO-92 / Ammopack		

- VERY LOW COLLECTOR TO EMITTER SATURATION VOLTAGE
- HIGH CURRENT GAIN CHARACTERISTIC
- FAST-SWITCHING SPEED


APPLICATIONS:


- EMERGENCY LIGHTING
- VOLTAGE REGULATORS
- RELAY DRIVERS
- HIGH EFFICIENCY LOW VOLTAGE **SWITCHING APPLICATIONS**

The device is manufactured in NPN Planar Technology by using a "Base Island" layout.

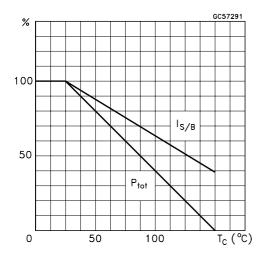
The resulting Transistor shows exceptional high gain performance coupled with very low saturation voltage.

ABSOLUTE MAXIMUM RATINGS

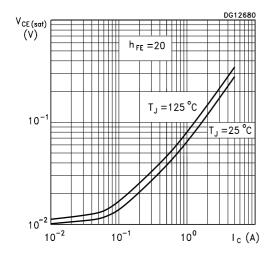
Symbol	Parameter	Value	Unit
V_{CBO}	Collector-Base Voltage (I _E = 0)	150	٧
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	60	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	7	V
Ic	Collector Current	5	Α
I _{CM}	Collector Peak Current (t _p < 5 ms)	15	Α
I _B	Base Current	2	Α
P _{tot}	Total Dissipation at T _{amb} = 25 °C	1.1	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

1/8 September 2003

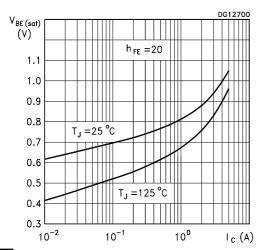
THERMAL DATA

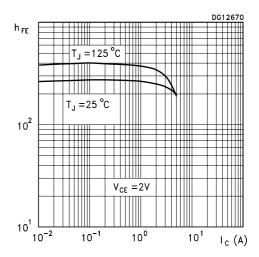

Ī	R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	114	°C/W
	R _{thj-case}	Thermal Resistance Junction-case	Max	83.3	°C/W

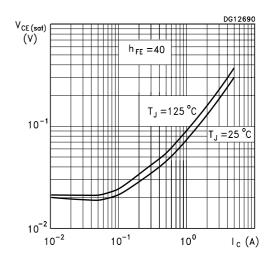
ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

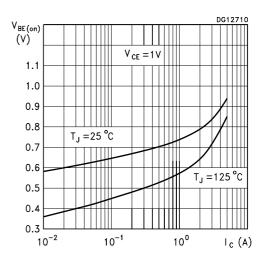

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CBO}	Collector Cut-off Current (I _E = 0)	V _{CB} = 40 V				0.1	μΑ
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 4 V				0.1	μΑ
V _{(BR)CBO}	Collector-Base Breakdown Voltage (I _E = 0)	I _C = 100 μA		150			V
V _{(BR)CEO*}	Collector-Emitter Breakdown Voltage (I _B = 0)	I _C = 1 mA		60			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	Ι _Ε = 100 μΑ		7			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	I _C = 100 mA I _C = 2 A I _C = 3 A I _C = 5 A	$I_B = 5$ mA $I_B = 50$ mA $I_B = 150$ mA $I_B = 200$ mA		150 200	50 300 400 600	mV mV mV
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 2 A	I _B = 100 mA		0.9	1.2	V
h _{FE} *	DC Current Gain	I _C = 100 mA I _C = 5 A I _C = 10 A	$V_{CE} = 2 V$ $V_{CE} = 2 V$ $V_{CE} = 2 V$	200 85 20		400	
f _T	Transition frequency	V _{CE} = 10 V	$I_C = 50 \text{ mA}$		150		MHz
Ссво	Collector-Base Capacitance	V _{CB} = 10 V	f = 1 MHz		50		pF
t _{on} t _s t _f	RESISTIVE LOAD Turn- on Time Storage Time Fall Time	I _C = 1 A I _{B1} = - I _{B2} = 0.1 A	V _{CC} = 30 V		50 1.35 120		ns µs ns

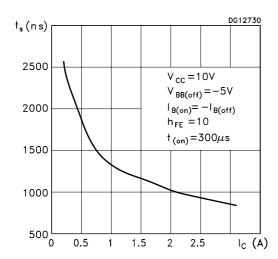
^{*} Pulsed: Pulse duration = 300µs, duty cycle = 1.5 %

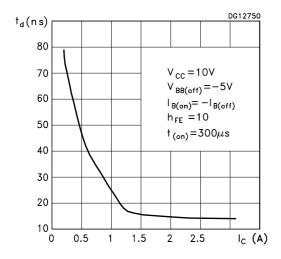

Derating Curve


Collector-Emitter Saturation Voltage

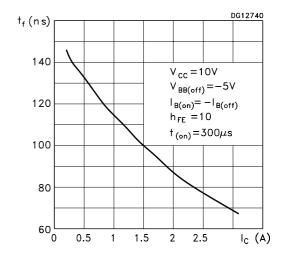

Base-Emitter Saturation Voltage


DC Current Gain


Collector-Emitter Saturation Voltage


Base-Emitter On Voltage

Switching Times Resistive Load


Switching Times Resistive Load

Switching Times Inductive Load

Switching Times Resistive Load

Switching Times Inductive Load

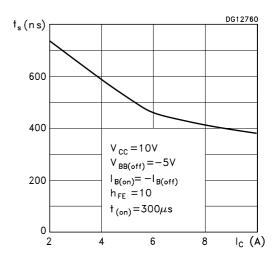
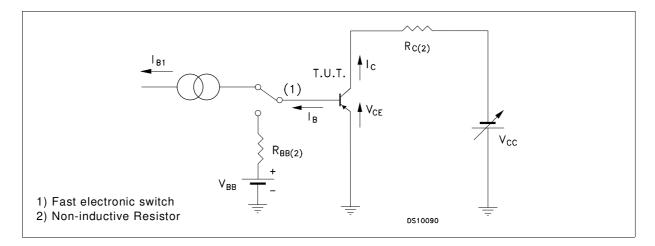
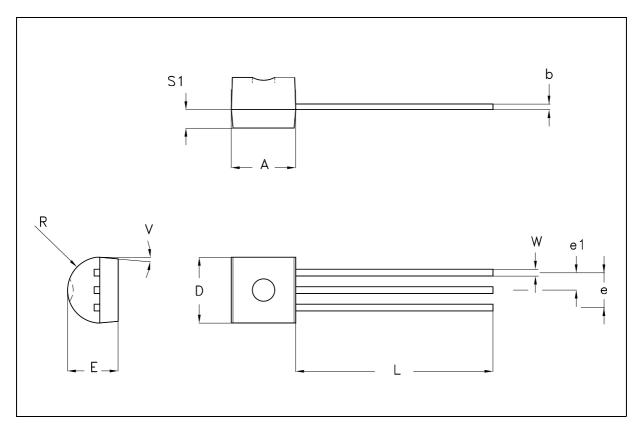
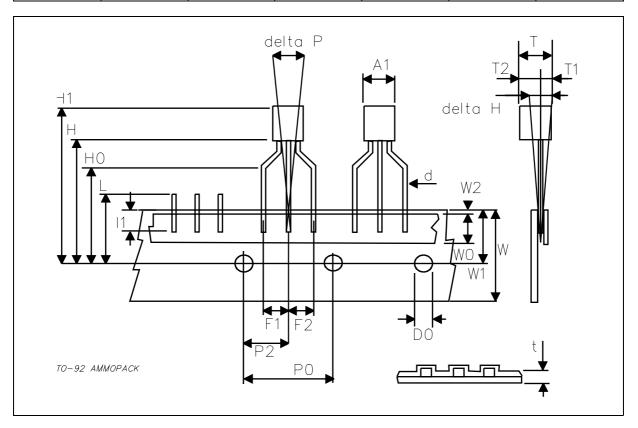




Figure 1: Resistive Load Switching Test Circuit.


TO-92 MECHANICAL DATA

DIM.	mm			inch			
2	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	4.32		4.95	0.170		0.195	
b	0.36		0.51	0.014		0.020	
D	4.45		4.95	0.175		0.194	
Е	3.30		3.94	0.130		0.155	
е	2.41		2.67	0.095		0.105	
e1	1.14		1.40	0.045		0.055	
L	12.70		15.49	0.500		0.609	
R	2.16		2.41	0.085		0.094	
S1	1.14		1.52	0.045		0.059	
W	0.41		0.56	0.016		0.022	
V	4 degree		6 degree	4 degree		6 degree	

TO-92 AMMOPACK SHIPMENT (Suffix"-AP") MECHANICAL DATA

DIM.	mm			inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
A1			4.80			0.189	
Т			3.80			0.150	
T1			1.60			0.063	
T2			2.30			0.091	
d			0.48			0.019	
P0	12.50	12.70	12.90	0.492	0.500	0.508	
P2	5.65	6.35	7.05	0.222	0.250	0.278	
F1,F2	2.44	2.54	2.94	0.096	0.100	0.116	
delta H	-2.00		2.00	-0.079		0.079	
W	17.50	18.00	19.00	0.689	0.709	0.748	
W0	5.70	6.00	6.30	0.224	0.236	0.248	
W1	8.50	9.00	9.25	0.335	0.354	0.364	
W2			0.50			0.020	
Н	18.50		20.50	0.728		0.807	
H0	15.50	16.00	16.50	0.610	0.630	0.650	
H1			25.00			0.984	
D0	3.80	4.00	4.20	0.150	0.157	0.165	
t			0.90			0.035	
L			11.00			0.433	
I1	3.00			0.118			
delta P	-1.00		1.00	-0.039		0.039	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.

All other names are the property of their respective owners.

© 2003 STMicroelectronics - All Rights reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com