

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STTH1002C-Y

Automotive high efficiency ultrafast diode

Features

- Suited for SMPS
- Low losses
- Low forward and reverse recovery times
- High junction temperature
- Low leakage current
- AEC-Q101 qualified

Description

Dual center tap rectifier suited for switch mode power supplies and high frequency DC to DC converters.

Packaged in DPAK and D²PAK, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection for automotive applications.

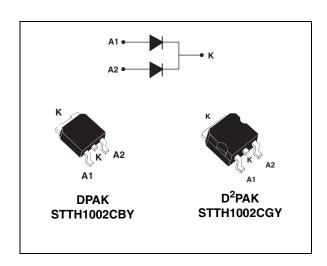


Table 1. Device summary

Symbol	Value
I _{F(AV)}	Up to 2 x 8 A
V_{RRM}	200 V
T _j (max)	175 °C
V _F (typ)	0.78 V
t _{rr} (typ)	20 ns

Characteristics STTH1002C-Y

1 Characteristics

Table 2. Absolute ratings (limiting values, per diode)

Symbol	Parameter	Value	Unit			
V_{RRM}	Repetitive peak reverse voltage			200	V	
1	D ² PAK				Δ.	
'F(RMS)	I _{F(RMS)} Forward rms current		DPAK	10	Α	
		T _c = 155 °C	Per diode	5		
,	Average forward current S OF	T _c = 150 °C	Per device	10	Α	
I _{F(AV)}	Avarage forward current $\delta = 0.5$	T _c = 135 °C	Per diode	8	A	
		T _c = 125 °C	Per device	16		
I _{FSM}	Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$			50	Α	
T _{stg}	Storage temperature range			-65 to + 175	°C	
Tj	Operating junction temperature range			-40 to + 175	°C	

Table 3. Thermal parameters

Symbol	Parameter	Value (max)	Unit
D	Junction to case Per diode	4.0	
R _{th(j-c)}	Per device	2.5	°C/W
R _{th(j-c)}	Coupling	1.0	

When the diodes 1 and 2 are used simultaneously: ΔT_i (diode1) = P(diode1) x $R_{th(i-c)}$ (per diode) + P(diode2) x $R_{th(c)}$

Table 4. Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Reverse leakage current	T _j = 25 °C	V- - V			5	μA
'R''	neverse leakage current	T _j = 125 °C	$V_R = V_{RRM}$		3	40	μΑ
	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	I _F = 5 A			1.1	
V (2)		T _j = 25 °C	I _F = 10 A			1.25	V
VF` ′		T _j = 150 °C	I _F = 5 A		0.78	0.89	V
		T _j = 150 °C	I _F = 10 A			1.05	

^{1.} Pulse test: t_p = 5 ms, δ < 2 %

To evaluate the conduction losses use the following equation:

$$P = 0.73 \times I_{F(AV)} + 0.032 I_{F}^{2}_{(RMS)}$$

^{2.} Pulse test: t_p = 380 μ s, δ < 2 %

STTH1002C-Y Characteristics

Table 5. Dynamic electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
t _{rr}	,	,	$I_F = 1 \text{ A V}_R = 30 \text{ V}$ $dI_F/dt = 100 \text{ A/}\mu\text{s}$		20	25	ns
I _{RM}	Reverse recovery current	T _j = 125 °C	$I_F = 5 \text{ A}$ $V_R = 160 \text{ V}$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$		5.9	7.6	Α
t _{fr}	Forward recovery time	T _j = 25 °C	$I_F = 5 \text{ A}$ $dI_F/dt = 100 \text{ A/}\mu\text{s}$ $V_{FR} = 1.1 \text{ x } V_{Fmax}$			110	ns
V _{FP}	Forward recovery voltage	T _j = 25 °C	$I_F = 5 \text{ A}$ $dI_F/dt = 100 \text{ A/}\mu\text{s}$		2.4		V

Characteristics STTH1002C-Y

Figure 1. Peak current versus duty cycle (per diode)

1M(A)
60
40
40
40
40
P = 10W
8
6=tp/T + tp

Figure 2. Forward voltage drop versus forward current (typical values, per diode)

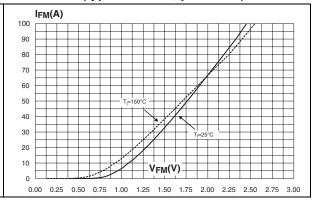


Figure 3. Forward voltage drop versus forward current (maximum values, per diode)

0.3 0.4 0.5 0.6

0.1

0.0

| IFM(A) | 100 | 80 | 70 | 100

Figure 4. Relative variation of thermal impedance junction to case versus pulse duration

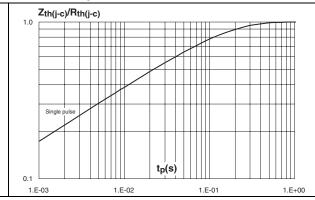
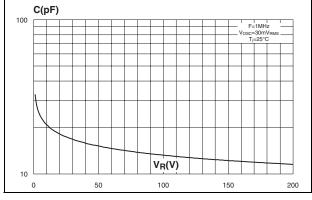
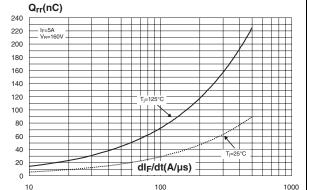




Figure 5. Junction capacitance versus reverse voltage applied (typical values, per diode)

Figure 6. Reverse recovery charges versus dl_F/dt (typical values, per diode)

STTH1002C-Y Characteristics

Figure 7. Reverse recovery time versus dl_F/dt Figure 8. (typical values, per diode)

Peak reverse recovery current versus dl_F/dt (typical values, per diode)

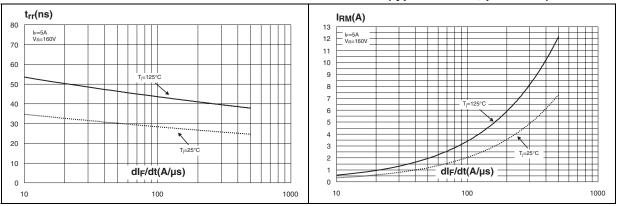


Figure 9. Dynamic parameters versus junction temperature

Figure 10. Thermal resistance junction to ambient versus copper surface under tab for D²PAK

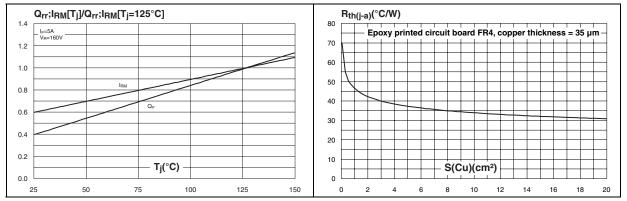
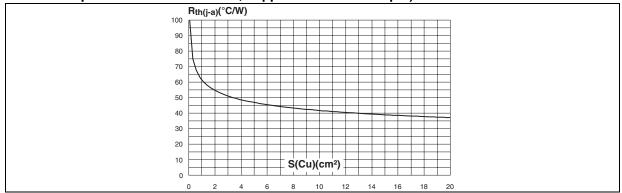
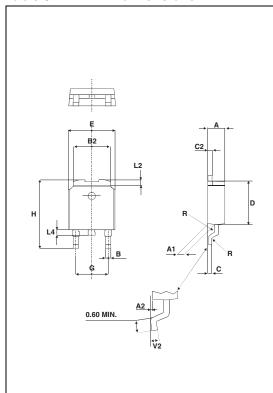



Figure 11. Thermal resistance junction to ambient versus copper surface under tab (Epoxy printed circuit board FR4, copper thickness = 35 µm) for DPAK



2 Package mechanical data

- Epoxy meets UL94, V0
- Cooling method: by conduction (method C)

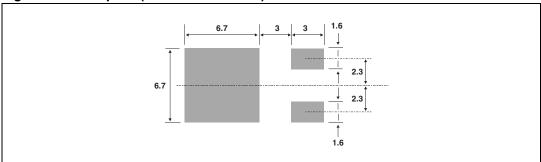

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Table 6. DPAK dimensions

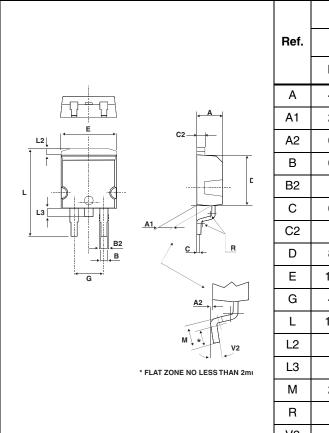

	Dimensions					
Ref.	Millim	neters	Inc	hes		
	Min.	Max.	Min.	Max.		
Α	2.20	2.40	0.086	0.094		
A1	0.90	1.10	0.035	0.043		
A2	0.03	0.23	0.001	0.009		
В	0.64	0.90	0.025	0.035		
B2	5.20	5.40	0.204	0.212		
С	0.45	0.60	0.017	0.023		
C2	0.48	0.60	0.018	0.023		
D	6.00	6.20	0.236	0.244		
Е	6.40	6.60	0.251	0.259		
G	4.40	4.60	0.173	0.181		
Н	9.35	10.10	0.368	0.397		
L2	0.80 typ.		0.03	1 typ.		
L4	0.60	1.00	0.023	0.039		
V2	0°	8°	0°	8°		

Figure 12. Footprint (dimensions in mm)

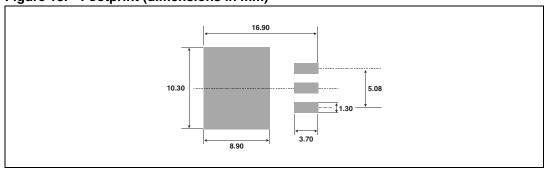

6/9 Doc ID 17536 Rev 2

Table 7. D²PAK dimensions

	Dimensions				
Ref.	Millim	neters	Inc	hes	
	Min.	Max.	Min.	Max.	
Α	4.40	4.60	0.173	0.181	
A1	2.49	2.69	0.098	0.106	
A2	0.03	0.23	0.001	0.009	
В	0.70	0.93	0.027	0.037	
B2	1.14	1.70	0.045	0.067	
С	0.45	0.60	0.017	0.024	
C2	1.23	1.36	0.048	0.054	
D	8.95	9.35	0.352	0.368	
Е	10.00	10.40	0.393	0.409	
G	4.88	5.28	0.192	0.208	
L	15.00	15.85	0.590	0.624	
L2	1.27	1.40	0.050	0.055	
L3	1.40	1.75	0.055	0.069	
М	2.40	3.20	0.094	0.126	
R	0.40	typ.	0.016	6 typ.	
V2	0°	8°	0°	8°	

Figure 13. Footprint (dimensions in mm)

Ordering information STTH1002C-Y

3 Ordering information

Table 8. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode	
STTH1002CBY-TR	STTH1002CY	DPAK	0.3 g	2500	Tane and real	
STTH1002CGY-TR	STTH1002CGY	D ² PAK	1.48 g	1000	- Tape and reel	

4 Revision history

Table 9. Document revision history

Date	Revision	Changes
21-Oct-2010	1	First issue.
03-Nov-2011	2	Updated Table 7 and Table 8.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time. without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

