

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

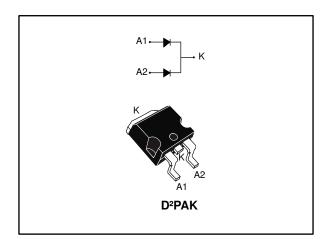
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Automotive high efficiency ultrafast diode

Datasheet - production data

Features

- AEC-Q101 qualified
- Low losses
- Low forward and reverse recovery time
- Low leakage current
- High junction temperature
- V_{RRM} guaranteed from -40 to +175 °C
- PPAP capable

Description

Dual center tap rectifier suited for switch mode power supplies and high frequency DC to DC converters.

Packaged in D²PAK, this device is especially intended for use in low voltage, high frequency inverters, freewheeling and polarity protection applications for automotive applications.

Table 1: Device summary

Symbol	Value
I _{F(AV)}	2 x 8 A
V_{RRM}	200 V
T _j (max.)	175 °C
V _F (typ.)	0.78 V
t _{rr} (typ.)	21 ns

Characteristics STTH1602C-Y

1 Characteristics

Table 2: Absolute ratings (limiting values, per diode, at 25 °C, unless otherwise specified)

Symbol	Parameter			Value	Unit
V _{RRM}	Repetitive peak reverse voltage (T _j =	-40 to +175 °C)		200	V
I _{F(RMS)}	Forward rms current			26	Α
	Average forward current δ = 0.5,	T _C = 150 °C	Per diode	8	
I _{F(AV)}	square wave	T _C = 140 °C	Per device	16	Α
I _{FSM}	Surge non repetitive forward current	t _p = 10 ms sinu	usoidal	100	Α
T _{stg}	Storage temperature range			-65 to +175	°C
Tj	Maximum operating junction temperature range -40 to +175			°C	

Table 3: Thermal parameter

Symbol	Parameter	Max. value	Unit	
D	Junction to case	Per diode	2.7	°C/W
R _{th(j-c)}	Junction to case	Per device	1.6	-0/00
R _{th(c)}	Coupling		0.5	°C/W

When the diodes 1 and 2 are used simultaneously:

 $\Delta T_{j(diode1)} = P_{(diode1)} \; x \; R_{th(j\text{-}c) \; (per \; diode)} \; + \; P_{(diode2)} \; x \; R_{th(c)}$

Table 4: Static electrical characteristics (per diode)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
1 (1)	Doverse leeke se current	T _j = 25 °C	V _R = V _{RRM}	1		6	
IR ^(*)	I _R ⁽¹⁾ Reverse leakage current	T _j = 125 °C		-	4	60	μΑ
	V (2)	T _j = 25 °C	I _F = 8 A	-		1.10	
V _F ⁽²⁾		T _j = 150 °C		-	0.78	0.90	V
V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	1 1C A	-		1.25	V	
		T _j = 150 °C	I _F = 16 A	-		1.05	

Notes:

 $^{(1)}\text{Pulse}$ test: t_p = 5 ms, δ < 2%

 $^{(2)}$ Pulse test: t_p = 380 µs, δ < 2%

To evaluate the conduction losses, use the following equation:

 $P = 0.75 \text{ x } I_{F(AV)} + 0.01875 \text{ x } I_{F^2(RMS)}$

STTH1602C-Y Characteristics

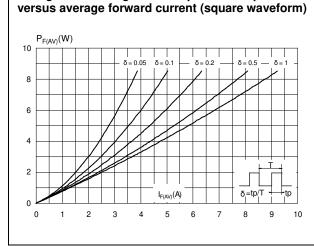
Table 5: Dynamic electrical characteristics (per diode)

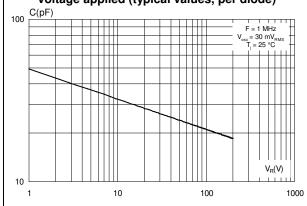
Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time	T _j = 25 °C	I _F = 1 A, V _R = 30 V, dI _F /dt = 100 A/μs	-	21	26	ns
I _{RM}	Reverse recovery current	T _j = 125 °C	$I_F = 8 \text{ A},$ $V_R = 160 \text{ V},$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$	-	8	10	Α

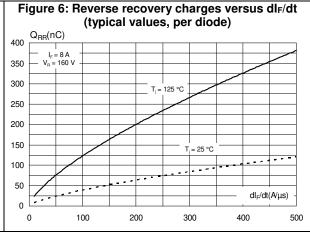
Characteristics STTH1602C-Y

Characteristics (curves) 1.1

Figure 1: Average forward power dissipation




Figure 2: Forward voltage drop versus forward current (typical values) 100.0 T_j = 25 °C 1.0 $V_F(V)$ 0.1 0.5 1.0 0.0 1.5 2.0

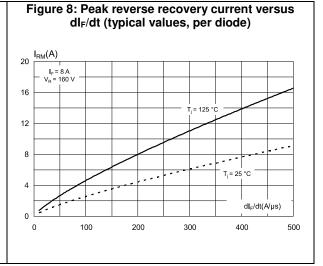

Figure 3: Forward voltage drop versus forward current (maximum values)

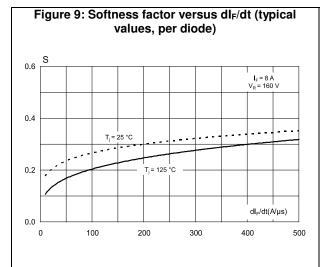
100.0 = 150 °C 10.0 T_j = 25 °C 1.0 V_F(V) 0.0 0.5 1.0 1.5 2.0 2.5

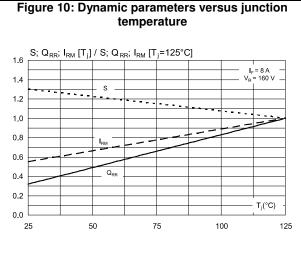
Figure 4: Relative variation of thermal impedance junction to case versus pulse duration Zth_(j-c)/Rth_(j-c) Single pulse D²PAK tp(s) 1.E-03 1.E-02 1.E-01 1.E+00

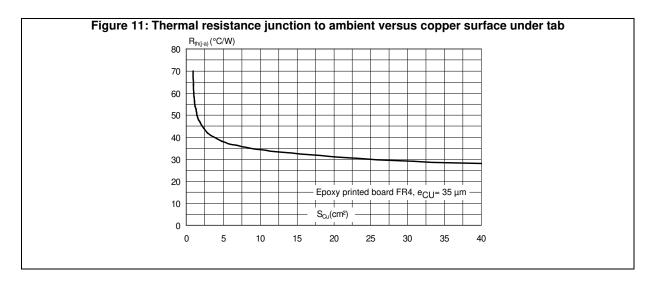
Figure 5: Junction capacitance versus reverse voltage applied (typical values, per diode)

STTH1602C-Y Characteristics


Figure 7: Reverse recovery time versus dlr/dt (typical values, per diode)


t_{RR}(ns)


t_R = 8A


v_R = 160 v

d_R =

Package information STTH1602C-Y

2 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

- Cooling method: by conduction (C)
- Epoxy meets UL94,V0

STTH1602C-Y Package information

2.1 D²PAK package information

Figure 12: D²PAK package outline

This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

Table 6: D²PAK package mechanical data

Dimensions				
Ref.	Millim	neters		hes
	Min.	Max.	Min.	Max.
А	4.36	4.60	0.172	0.181
A1	0.00	0.25	0.000	0.010
b	0.70	0.93	0.028	0.037
b2	1.14	1.70	0.045	0.067
С	0.38	0.69	0.015	0.027
c2	1.19	1.36	0.047	0.053
D	8.60	9.35	0.339	0.368
D1	6.90	8.00	0.272	0.311
D2	1.10	1.50	0.043	0.060
E	10.00	10.55	0.394	0.415
E1	8.10	8.90	0.319	0.346
E2	6.85	7.25	0.266	0.282
е	2.54	typ.	0.1	00
e1	4.88	5.28	0.190	0.205
Н	15.00	15.85	0.591	0.624
J1	2.49	2.90	0.097	0.112
L	1.90	2.79	0.075	0.110
L1	1.27	1.65	0.049	0.065
L2	1.30	1.78	0.050	0.070
R	0.4	typ.	0.0)15
V2	0°	8°	0°	8°

STTH1602C-Y Package information

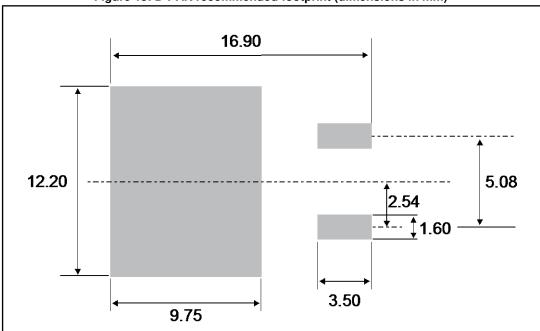


Figure 13: D²PAK recommended footprint (dimensions in mm)

Ordering information STTH1602C-Y

3 Ordering information

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STTH1602CGY-TR	STTH1602CGY	D ² PAK	1.48 g	1000	Tape and reel

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
04-Dec-2017	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

