

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

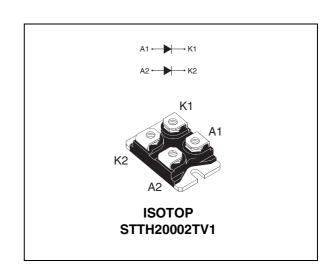
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STTH20002TV


TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER

MAIN PRODUCT CHARACTERISTICS

I _{F(AV)}	Up to 2 x 120 A
V _{RRM}	200 V
T _j	150°C
V _F (typ)	0.75 V
t _{rr} (typ)	41 ns

FEATURES AND BENEFITS

- Suited for SMPS
- Very Low Forward Losses
- Low recovery time
- High surge current capability
- Insulated: Insulating voltage=2500V_{RMS}
 Capacitance = 55pF

DESCRIPTION

Dual rectifier suited for welding equipment, high power industrial application.

Packaged in Isotop, this device is intended for use in the secondary rectification of the applications.

ABSOLUTE RATINGS (limiting values, per diode)

Symbol	Parameter	Value	Unit		
V_{RRM}	Repetitive peak reverse voltage	200	٧		
I _{F(RMS)}	RMS forward voltage	170	Α		
I _{F(AV)}	Average forward current	Tc = 95°C	Per diode	100	Α
	$\delta = 0.5$	Tc = 80°C	Per diode	120	
I _{FSM}	Surge non repetitive forward current	tp = 10ms s	1000	Α	
T _{stg}	Storage temperature range	-55 to + 150	°C		
T _j	Maximum operating junction temperature	150	°C		

Order Codes

Part Number	Marking
STTH20002TV1	STTH20002TV1

THERMAL RESISTANCE

Symbol	Parameter	Maximum	Unit	
R _{th(j-c)}	Junction to case	Per diode	0.52	°C/W
		Total	0.31	
R _{th(c)}	Coupling		0.1	°C/W

STATIC ELECTRICAL CHARACTERISTICS (per diode)

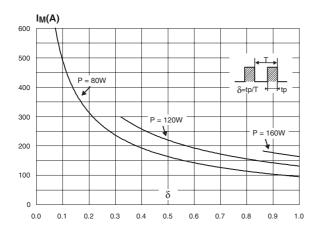
Symbol	Parameter	Test conditions		Min.	Тур	Max.	Unit
I _R *	Reverse leakage current	T _j = 25°C	$V_R = V_{RRM}$			100	μΑ
		T _j = 125°C			80	800	
V _F **	Forward voltage drop	T _j = 25°C	I _F = 100A			1.05	V
			I _F = 200A			1.20	
		T _j = 150°C	I _F = 100A		0.75	0.85	
			I _F = 200A			1.05	

Pulse test:

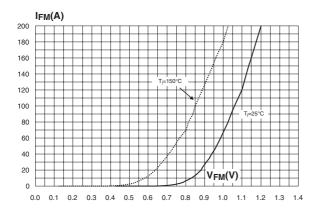
To evaluate the conduction losses use the following equation: $P = 0.65 \times I_{F(AV)} + 0.002 I_{F}^{2}(RMS)$

DYNAMIC CHARACTERISTICS (per diode)

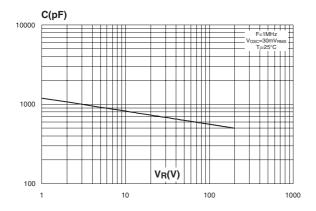
Symbol	Parameter		Test conditions	Min.	Тур	Max.	Unit
t _{rr}	Reverse recovery time	T _j = 25°C	$I_F = 1A dI_F/dt = 200 A/\mu s$ $V_R = 30V$		41	50	ns
I _{RM}	Reverse recovery current	,	$I_F = 100A$ $V_R = 160V$ $dI_F/dt = 200 A/\mu s$		11.5	15	Α
t _{fr}	Forward recovery time	T _j = 25°C	$I_F = 100A$ $dI_F/dt = 200 A/\mu s$ $V_{FR} = 1.1 x V_{Fmax}$			800	ns
V _{FP}	Forward recovery voltage	T _j = 25°C	$I_F = 100A$ $dI_F/dt = 200 A/\mu s$		2.5		V

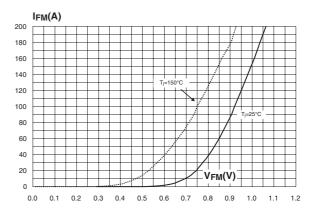

2/5

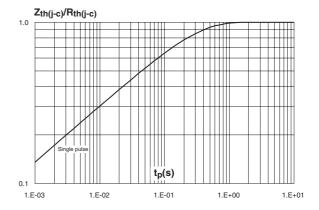
When the diodes 1 and 2 are used simultaneously: $\Delta \text{ Tj(diode 1)} = \text{P(diode 1)} \times \text{R}_{th(j-c)}(\text{Per diode}) + \text{P(diode 2)} \times \text{R}_{th(c)}$


^{*} tp = 5 ms, δ < 2%

^{**} tp = 380 µs, δ < 2%


Fig. 1: Peak current versus duty cycle (per diode).


Fig. 2-2: Forward voltage drop versus forward current (maximum values, per diode).


Fig. 4: Junction capacitance versus reverse voltage applied (typical values, per diode).

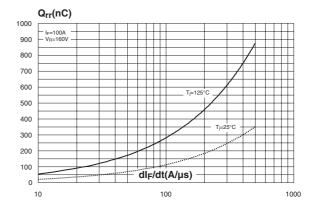

Fig. 2-1: Forward voltage drop versus forward current (typical values, per diode).

Fig. 3: Relative variation of thermal impedance junction to case versus pulse duration.

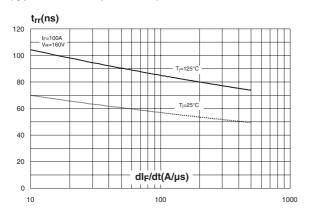
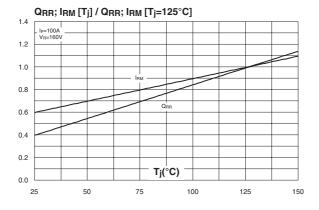


Fig. 5: Reverse recovery charges versus dI_F/dt (typical values, per diode).



3/5

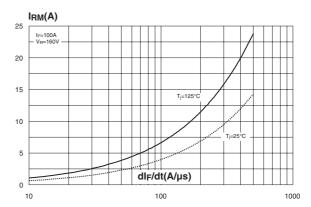
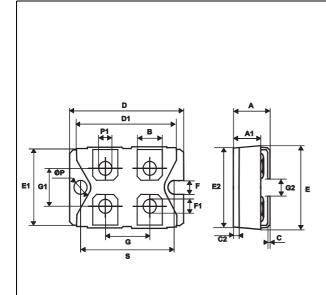

Fig. 6: Reserve recovery time versus dI_F/dt (typical values, per diode).

Fig. 8: Dynamic parameters versus junction temperature.


Fig. 7: Peak reverse recovery current versus dI_{F}/dt (typical values, per diode).

57.

PACKAGE MECHANICAL DATA

ISOTOP

REF.	DIMENSIONS			
	Millimeters		Inc	hes
	Min.	Max.	Min.	Max.
Α	11.80	12.20	0.465	0.480
A1	8.90	9.10	0.350	0.358
В	7.8	8.20	0.307	0.323
С	0.75	0.85	0.030	0.033
C2	1.95	2.05	0.077	0.081
D	37.80	38.20	1.488	1.504
D1	31.50	31.70	1.240	1.248
E	25.15	25.50	0.990	1.004
E1	23.85	24.15	0.939	0.951
E2	24.80) typ.	0.97	6 typ.
G	14.90	15.10	0.587	0.594
G1	12.60	12.80	0.496	0.504
G2	3.50	4.30	0.138	0.169
F	4.10	4.30	0.161	0.169
F1	4.60	5.00	0.181	0.197
Р	4.00	4.30	0.157	0.69
P1	4.00	4.40	0.157	0.173
S	30.10	30.30	1.185	1.193

ORDERING INFORMATION

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STTH20002TV1	STTH20002TV1	ISOTOP	27 g (without screws)	10 (with screws)	Tube

■ Epoxy meets UL94, V0

■ Cooling method: by conduction (C)

REVISION HISTORY

Table 1: Revision history

Date	Revision	Description of Changes
26-May-2004	1	First issue
13-Jul-2004	2	Figure 6 legend corrected: "Forward" changed to "Reverse"

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com

57.