

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



### Contact us

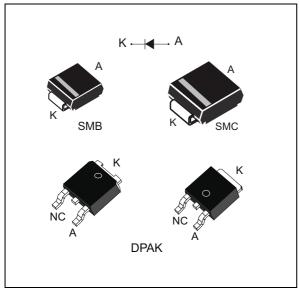
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China








### STTH4R02



### Ultrafast recovery diode

Datasheet - production data



**Description** 

#### Symbol Value 4 A $I_{F(AV)}$ 200 V $V_{RRM}$ 0.76 V V<sub>F</sub> (typ) 175 °C T<sub>i</sub> (max) t<sub>rr</sub> (typ) 16 ns

Table 1. Device summary

The STTH4R02 uses ST's new 200 V planar Pt doping technology, and it is specially suited for switching mode base drive and transistor circuits. Packaged in DPAK, SMB and SMC, this device is intended for use in low voltage, high frequency inverters, freewheeling and polarity protection.

### **Features**

- Negligible switching losses
- High junction temperature
- Very low conduction losses
- Low forward and reverse recovery times
- ECOPACK®2 compliant component for DPAK on demand

Characteristics STTH4R02

### 1 Characteristics

Table 2. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

| Symbol             | Para                                                                  |           | Value                   | Unit         |    |
|--------------------|-----------------------------------------------------------------------|-----------|-------------------------|--------------|----|
| $V_{RRM}$          | Repetitive peak reverse voltage                                       |           |                         | 200          | V  |
| 1                  | Forward rms current                                                   | DPAK      |                         | 10           | Α  |
| IF(RMS)            | Forward fins current                                                  | SMB / SMC |                         | 70           | ^  |
| 1                  | Average forward current,                                              | DPAK      | T <sub>c</sub> = 160 °C | 4            | Α  |
| I <sub>F(AV)</sub> | $\delta$ = 0.5, square wave                                           | SMB / SMC | T <sub>L</sub> = 95 °C  | <del>1</del> | A  |
| I <sub>FSM</sub>   | Surge non repetitive forward current $t_p = 10 \text{ ms sinusoidal}$ |           | 70                      | Α            |    |
| T <sub>stg</sub>   | Storage temperature range                                             |           |                         | -65 to +175  | °C |
| T <sub>j</sub>     | Maximum operating junction temperature                                |           |                         | 175          | °C |

**Table 3. Thermal parameters** 

| Symbol               | Parameter        | Max. value | Unit |      |
|----------------------|------------------|------------|------|------|
| R <sub>th(j-c)</sub> | Junction to case | DPAK       | 3.5  | °C/W |
| R <sub>th(j-l)</sub> | Junction to lead | SMB / SMC  | 20   | C/VV |

Table 4. Static electrical characteristics

| Symbol                        | Parameter               | Test conditions         |                       | Min. | Тур. | Max. | Unit |
|-------------------------------|-------------------------|-------------------------|-----------------------|------|------|------|------|
| I <sub>R</sub> <sup>(1)</sup> | Reverse leakage current | T <sub>j</sub> = 25 °C  | $V_R = V_{RRM}$       | -    |      | 3    | μА   |
| 'R`                           | neverse leakage current | T <sub>j</sub> = 125 °C |                       | -    | 2    | 20   |      |
|                               | Forward voltage drop    | T <sub>i</sub> = 25 °C  | I <sub>F</sub> = 12 A | -    | 1.15 | 1.25 |      |
| V <sub>F</sub> <sup>(2)</sup> |                         | ,                       | 1 4 4                 | -    | 0.95 | 1.05 | V    |
|                               |                         | T <sub>j</sub> = 150 °C | I <sub>F</sub> = 4 A  | -    | 0.76 | 0.83 |      |

<sup>1.</sup> Pulse test:  $t_p$  = 5 ms,  $\delta$  < 2%

To evaluate the conduction losses, use the following equation:

$$P = 0.67 \times I_{F(AV)} + 0.04 \times I_{F}^{2}_{(RMS)}$$

<sup>2.</sup> Pulse test:  $t_p$  = 380  $\mu$ s,  $\delta$  < 2%

STTH4R02 Characteristics

Table 5. Dynamic electrical characteristics

| Symbol               | Parameter                                | Tests conditions                                                                     |                                                                                                   | Min. | Тур. | Max. | Unit |
|----------------------|------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------|------|------|------|
| A Davison management | T <sub>j</sub> = 25 °C                   | $I_F = 1 \text{ A}$<br>$dI_F/dt = -50 \text{ A}/\mu\text{s}$<br>$V_R = 30 \text{ V}$ | -                                                                                                 | 24   | 30   | - ns |      |
| ۲rr                  | $t_{rr}$ Reverse recovery time $T_j = 3$ | 1 <sub>j</sub> =25 0                                                                 | $I_F=1~A$<br>$dI_F/dt=-100~A/\mu s$<br>$V_R=30~V$                                                 | -    | 16   | 20   | 115  |
| I <sub>RM</sub>      | Reverse recovery current                 | T <sub>j</sub> = 125 °C                                                              | $I_F=4~A$<br>$dI_F/dt=-200~A/\mu s$<br>$V_R=160~V$                                                | -    | 4.4  | 5.5  | А    |
| t <sub>fr</sub>      | Forward recovery time                    | T <sub>j</sub> = 25 °C                                                               | $I_F = 4 \text{ A}$<br>$dI_F/dt = 50 \text{ A/}\mu\text{s}$<br>$V_{FR} = 1.1 \text{ x } V_{Fmax}$ | -    | 80   |      | ns   |
| V <sub>FP</sub>      | Forward recovery voltage                 | -                                                                                    | $I_F = 4 \text{ A}$<br>$dI_F/dt = 50 \text{ A}/\mu\text{s}$                                       | -    | 1.6  |      | V    |

Characteristics STTH4R02

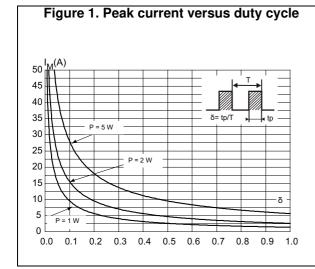



Figure 2. Forward voltage drop versus forward current (typical values)  $I_{\mathsf{F}}(\mathsf{A})$ 100 75 T<sub>j</sub> = 150 °C 50 25 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 3. Forward voltage drop versus forward current (maximum values)  $I_{\mathsf{F}}(\mathsf{A})$ 100 90 80 70 T, = 150 °C 60 50 40 = 25 °C 30 20 10 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 4. Relative variation of thermal impedance, junction to case, versus pulse duration

1.0

Zth(j-c)/Rth(j-c)

DPAK
Single pulse

1.E-03

1.E-02

1.E-01

1.E+00

duration (SMB)  $Z_{th(j-a)}/R_{th(j-a)}$ 1.0 0.9 SMB  $S_{CU} = 1 \text{ cm}^2$ 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 1.E+00 1.E+01 1.E+02 1.E-01 1.E+03

Figure 5. Relative variation of thermal

impedance, junction to ambient, versus pulse

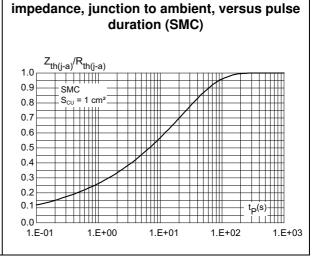



Figure 6. Relative variation of thermal

STTH4R02 Characteristics

Figure 7. Junction capacitance versus reverse applied voltage (typical values)

C(pF)

C(pF)

F=1MHz
V\_m=300m/kgus

MHz mm/sass 55°C 1

Figure 8. Reverse recovery charges versus  $dI_F/dt$  (typical values)

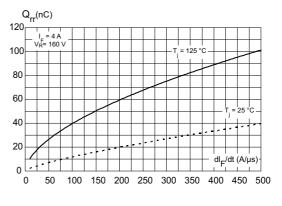



Figure 9. Reverse recovery time versus dl<sub>F</sub>/dt (typical values)

 $V_{R}(V)$ 

10

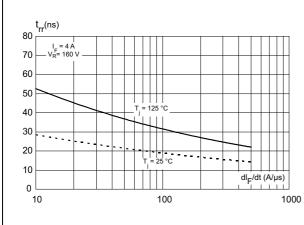



Figure 10. Peak reverse recovery current versus dl<sub>F</sub>/dt (typical values)

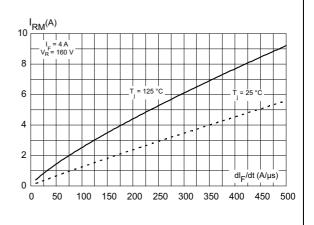



Figure 11. Dynamic parameters versus junction temperature (reference: T<sub>i</sub> = 125 °C)

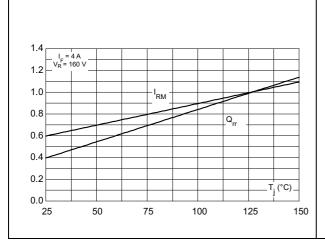
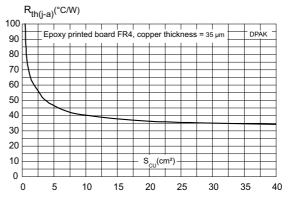




Figure 12. Thermal resistance, junction to ambient, versus copper surface under each lead



Characteristics STTH4R02

Figure 13. Thermal resistance, junction to ambient, versus copper surface under each lead

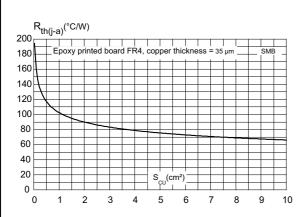
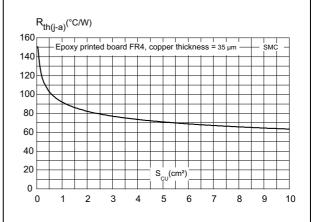




Figure 14. Thermal resistance, junction to ambient, versus copper surface under tab



STTH4R02 **Package information** 

#### 2 **Package information**

- Epoxy meets UL94,V0
- Cooling method: by conduction (C)
- Band indicates cathode

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

#### 2.1 **DPAK** package information

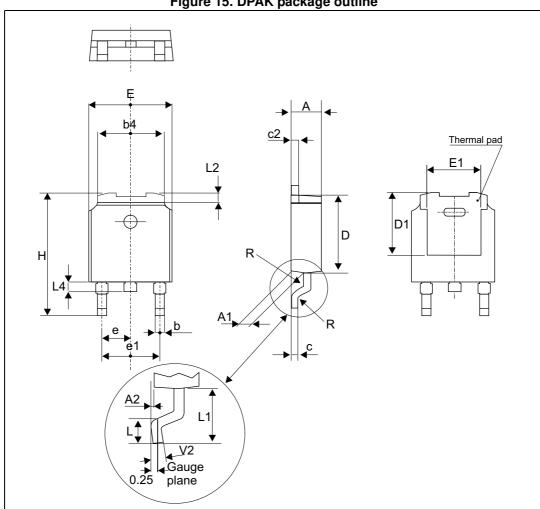
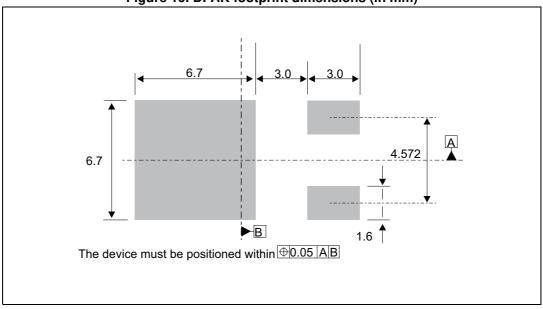



Figure 15. DPAK package outline

Note:


This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

Package information STTH4R02

Table 6. DPAK package mechanical data

|      |      |             | I     | Dimensions |        |       |
|------|------|-------------|-------|------------|--------|-------|
| Ref. |      | Millimeters |       |            | Inches |       |
|      | Min. | Тур.        | Max.  | Min.       | Тур.   | Max.  |
| Α    | 2.18 |             | 2.40  | 0.085      |        | 0.094 |
| A1   | 0.90 |             | 1.10  | 0.035      |        | 0.043 |
| A2   | 0.03 |             | 0.23  | 0.001      |        | 0.009 |
| b    | 0.64 |             | 0.90  | 0.025      |        | 0.035 |
| b4   | 4.95 |             | 5.46  | 0.194      |        | 0.214 |
| С    | 0.46 |             | 0.61  | 0.018      |        | 0.024 |
| c2   | 0.46 |             | 0.60  | 0.018      |        | 0.023 |
| D    | 5.97 |             | 6.22  | 0.235      |        | 0.244 |
| D1   | 4.95 |             | 5.60  | 0.194      |        | 0.220 |
| E    | 6.35 |             | 6.73  | 0.250      |        | 0.264 |
| E1   | 4.32 |             | 5.50  | 0.170      |        | 0.216 |
| е    |      | 2.28        |       |            | 0.090  |       |
| e1   | 4.40 |             | 4.70  | 0.173      |        | 0.185 |
| Н    | 9.35 |             | 10.40 | 0.368      |        | 0.409 |
| L    | 1.00 |             | 1.78  | 0.039      |        | 0.070 |
| L2   |      |             | 1.27  |            |        | 0.050 |
| L4   | 0.60 |             | 1.02  | 0.023      |        | 0.040 |
| V2   | -8°  |             | +8°   | -8°        |        | 8°    |

Figure 16. DPAK footprint dimensions (in mm)



STTH4R02 Package information

### 2.2 SMB package information

E1 A1 A2 b

Figure 17. SMB package outline

Table 7. SMB package mechanical data

|      | Dimensions |        |       |       |  |  |
|------|------------|--------|-------|-------|--|--|
| Ref. | Millim     | neters | Inc   | hes   |  |  |
|      | Min.       | Max.   | Min.  | Max.  |  |  |
| A1   | 1.90       | 2.45   | 0.075 | 0.096 |  |  |
| A2   | 0.05       | 0.20   | 0.002 | 0.008 |  |  |
| b    | 1.95       | 2.20   | 0.077 | 0.087 |  |  |
| С    | 0.15       | 0.40   | 0.006 | 0.016 |  |  |
| D    | 3.30       | 3.95   | 0.130 | 0.156 |  |  |
| E    | 5.10       | 5.60   | 0.201 | 0.220 |  |  |
| E1   | 4.05       | 4.60   | 0.159 | 0.181 |  |  |
| L    | 0.75       | 1.50   | 0.030 | 0.059 |  |  |

Package information STTH4R02

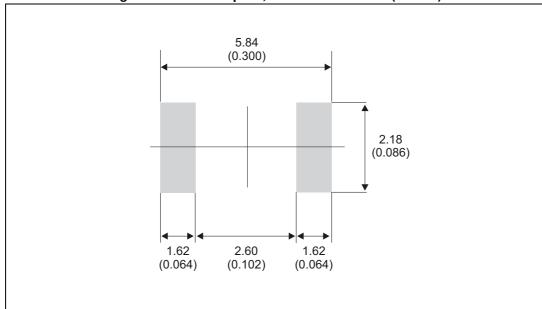



Figure 18. SMB footprint, dimensions in mm (inches)

## 2.3 SMC package information

Figure 19. SMC package outline

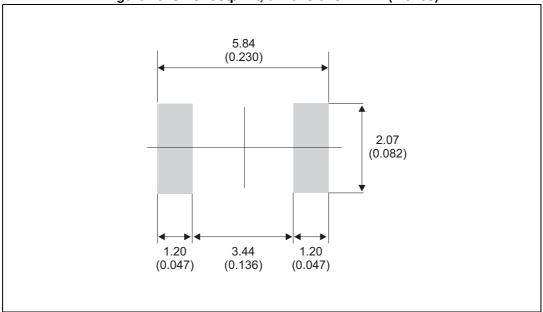

Package information STTH4R02

Table 8. SMC package mechanical data

|                  | Dimensions  |      |       |       |  |  |
|------------------|-------------|------|-------|-------|--|--|
| Ref.             | Millimeters |      | Inc   | hes   |  |  |
|                  | Min.        | Max. | Min.  | Max.  |  |  |
| A1               | 1.90        | 2.45 | 0.075 | 0.096 |  |  |
| A2               | 0.05        | 0.20 | 0.002 | 0.008 |  |  |
| b <sup>(1)</sup> | 2.90        | 3.20 | 0.114 | 0.126 |  |  |
| c <sup>(1)</sup> | 0.15        | 0.40 | 0.006 | 0.016 |  |  |
| D                | 5.55        | 6.25 | 0.218 | 0.246 |  |  |
| E                | 7.75        | 8.15 | 0.305 | 0.321 |  |  |
| E1               | 6.60        | 7.15 | 0.260 | 0.281 |  |  |
| E2               | 4.40        | 4.70 | 0.173 | 0.185 |  |  |
| L                | 0.75        | 1.50 | 0.030 | 0.059 |  |  |

<sup>1.</sup> Dimensions b and c apply to plated leads

Figure 20. SMC footprint, dimensions in mm (inches)



# 3 Ordering information

**Table 9. Ordering information** 

| Order code   | Marking   | Package | Weight  | Base qty | Delivery mode |
|--------------|-----------|---------|---------|----------|---------------|
| STTH4R02B-TR | STTH 4R02 | DPAK    | 0.32 g  | 2500     | Tape and reel |
| STTH4R02U    | 4R2U      | SMB     | 0.110 g | 2500     | Tape and reel |
| STTH4R02S    | 4R2S      | SMC     | 0.243 g | 2500     | Tape and reel |

### 4 Revision history

Table 10. Document revision history

| Date        | Revision | Changes                                                                            |
|-------------|----------|------------------------------------------------------------------------------------|
| 03-May-2006 | 1        | First issue.                                                                       |
| 10-Oct-2006 | 2        | Added SMC package                                                                  |
| 13-Apr-2010 | 3        | Updated ECOPACK statement. Updated dimensions tables for SMB and SMC.              |
| 01-Jul-2010 | 4        | Separated junction to lead values from junction to case values in <i>Table 3</i> . |
| 20-Nov-2014 | 5        | Removed TO-220AC, TO-220FPAC and DO-201AB package informations.                    |
| 02-Nov-2016 | 6        | Updated DPAK package information and reformatted to current standard.              |

### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved