### imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





### Power management Guide 2017



# **O** Content

| Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Applications4• Power supplies4Industrial welding13LED lighting - General illumination14Major home appliances20Renewable energy & harvesting22Uninterruptable power supplies (UPS)25e-Mobility26Wireless charging27                                                                                                                                                                                                                                                                             |  |
| Software tools                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Products29AC-DC conversion ICs29Battery management ICs (wired and wireless)34DC-DC switching conversion ICs37Digital power controllers and microcontrollers40Diodes and rectifiers (silicon and SiC)42Hot-swap power management44IGBTs46Intelligent power switches49LED drivers50Linear voltage regulators56LNB supplies57MOSFET and IGBT drivers58Photovoltaic ICs59Power MOSFETs (silicon and SiC)60Power over ethernet ICs63Protection devices64USB Type-C and power delivery controllers67 |  |



### Introduction





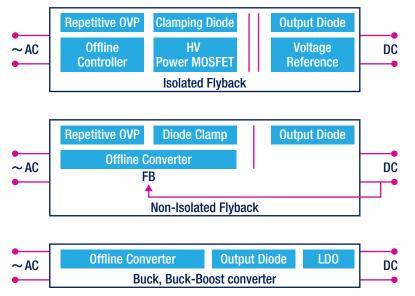




As one of the world's leading suppliers of both integrated and discrete power conversion semiconductor devices, ST's power management devices enable design of energy-saving, high-powerdensity and superior performance solutions. Moreover they are able to support the migration from analog to digital designs to achieve increased flexibility, smaller form factors and higher efficiency. ST's product portfolio includes highly-integrated AC-DC converters and controllers, switching DC-DC converters, silicon and SiC power MOSFETs, IGBTs, silicon and SiC rectifiers, protections, linear voltage regulators, battery management ICs (including wireless battery charger ICs), LED drivers, digital controllers, microcontrollers and more in a wide range of packages.

Today, optimizing complete solutions in terms of energy efficiency according to market requirements and energy regulations is practically mandatory. The key element in developing a successful power system is the best semiconductor device selection. To help you find the best device for the most common applications (power supplies, LED lighting, renewable energy & harvesting, wireless charging, home appliances, welding, UPS and on-board chargers for electric vehicles), this guide provides a complete mapping of ST's devices and includes information about dedicated system evaluation boards to better test the devices directly in your application and reduce the time to market. Using our eDesignSuite software tool, you can readily simulate power management circuits and choose the best-suited devices quickly.

## ) Applications


#### **POWER SUPPLIES**

#### **Auxiliary SMPS**

High-power-density and cost-effective auxiliary power supplies can be designed using a converter (where each IC includes a power MOSFET combined with control and protection circuitry in a single package) at a higher switching frequency to avoid a considerable increase in transformer and output capacitor size. ST offers a wide portfolio of highly-integrated offline converters up to 20 W with an extremely low total standby consumption (less than 4 mW for VIPerOP devices) and high breakdown voltage of 800 V for the VIPerPLUS family and 900 V for the Altair05. To reduce BOM costs, the Altair family works as a constant-voltage primary-side regulator (PSR-CV) avoiding the need for a voltage reference and opto-coupler in the circuit. Discrete solutions consisting of an offline controller plus an external MOSFET are also supported by ST. New STRVS voltage suppressors improve system reliability against repetitive over-voltages. New FERD diodes feature a very low forward voltage and a low leakage reverse current improve the system efficiency.

|                     |                                   | Offline c                     | onverters                                | Offline<br>controllers | HV power<br>MOSFETs                                                                                                                                             | Repetitive overvoltage protections | Clamping<br>diodes                       | Volt. ref.     | Output diodes                                      | LDO                                   |
|---------------------|-----------------------------------|-------------------------------|------------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------|----------------|----------------------------------------------------|---------------------------------------|
| Buck<br>Buck-bo     | Buck-boost                        |                               | VIPer0P<br>VIPer*1<br>VIPer*6            |                        | -                                                                                                                                                               |                                    |                                          | -              | STTH*06<br>STTH*08<br>STTH*10                      |                                       |
| Non-isol            | ated flyback                      | flyback                       |                                          |                        |                                                                                                                                                                 |                                    |                                          | -              |                                                    |                                       |
|                     | PSR-CV                            | -                             |                                          |                        |                                                                                                                                                                 |                                    |                                          | -              |                                                    |                                       |
| lsolated<br>flyback | Regulation<br>with<br>optocoupler | VIPer*5<br>VIPer*7<br>VIPer*8 | VIPer0P<br>VIPer*1<br>VIPer*6<br>ALTAIR* | STCH02<br>L6566B       | ST*N80K5<br>ST*N90K5<br>ST*N95K5<br>ST*N105K5<br>ST*N120K5<br>STW12N150K5<br>STW21N150K5<br>STW21N150K5<br>ST*3N170<br>SCT1000N170 <sup>1</sup><br>(SiC M0SFET) | STRVS*                             | STTH*06<br>STTH*08<br>STTH*10<br>STTH*12 | T*431<br>T*432 | STPS*<br>FERD*45<br>FERD*50<br>FERD*60<br>FERD*100 | LDF, LDFM<br>LDK220, LDK320<br>LDL212 |

#### **Typical configuration**



#### **MAIN EVALUATION BOARDS**



STEVAL-ISA096V1 2 W, buck-boost



#### STEVAL-ISA192V1 7 W not-isolated flyback with smart standby using VIPerOP and touch sensng

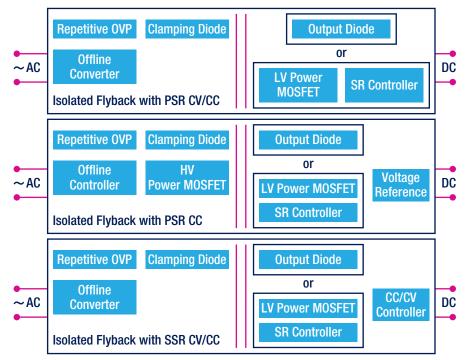
STEVAL-ISA178V1 5 V/200 mA buck-converter based on VIPer01



#### STEVAL-ISA183V1

16 W quasi resonant flyback converter for air conditioning applications using VIPer35LD

#### **Battery chargers**


Designing lighter, smaller wall chargers for portable devices is one of the most critical challenges for developers. Excellent standby power consumption, high efficiency in all load conditions, primary-side regulation (PSR) control methods and a set of integrated protections (to minimize the component count on the circuit) are the main market requirements. High performing offline converters (Altair\*) (i.e. controllers and MOSFET in the same package) and a new offline controller (STCH02) combined with an external MOSFET can be used for a reliable, efficient and safe battery charger working in PSR (i.e. without using opto-coupler and post current/voltage regulation). New STRVS protections improve the system reliability against repetitive over-voltages. For the application side (portable applications), ST offers a various set of linear and switching battery charger and monitoring ICs integrating functions able to minimize power consuption and save space on PCBs. ST also offers the EnFilm<sup>™</sup> thin-film battery, a new concept of extremely thin (220 µm), rechargeable solid-state batteries with fast constant-voltage charging.



|              |         |            | Off                           | iline                          | Controllers | Power MOSF                                                                       | ETs                            | Repetitive overvoltage | Clamping           | Output                                      | CC/CV controllers or |
|--------------|---------|------------|-------------------------------|--------------------------------|-------------|----------------------------------------------------------------------------------|--------------------------------|------------------------|--------------------|---------------------------------------------|----------------------|
|              |         |            | conv                          | erters                         | Controllers | HV                                                                               | LV                             | protections            | diodes             | diodes                                      | Voltage Reference    |
|              |         | SSR-CV/CC  | VIPer*5<br>VIPer*7<br>VIPer*8 | VIPer0P<br>VIPer01V<br>VIPer*6 | -           | -                                                                                | -                              |                        |                    | FERD*45                                     | TSM10*<br>SEA0*      |
|              |         | PSR-CV     | -                             | VIPELO                         | HVLED001A   | A ST*N65M2                                                                       |                                |                        | STTH*06            | FERD15S50                                   |                      |
| Wall<br>side | Flyback | PSR-CC     | -                             |                                | STCH02      | ST*N65M6<br>ST*N70M6 <sup>1</sup><br>SCTH35N65G2V-7 <sup>2</sup><br>(SiC M0SFET) | -                              | STRVS*                 | STTH*08<br>STTH*10 | FERD20U50<br>FERD20U60<br>FERD*100<br>STPS* | T*431<br>T*432       |
|              |         | PSC CV/CC  | ALT                           | 'AIR*                          | -           | -                                                                                | -                              |                        |                    |                                             | -                    |
|              |         | Synch Rect | -                             |                                | STSR30      | -                                                                                | ST*N4F7<br>ST*N6F7<br>ST*N10F7 | -                      | -                  | -                                           | -                    |

|                  | Battery of                                      | charger ICs | Pottory monitoring ICo | Li lan battaru |
|------------------|-------------------------------------------------|-------------|------------------------|----------------|
|                  | Linear                                          | Switching   | Battery monitoring ICs | Li-lon battery |
| Application side | STBC02<br>STBC03<br>L6924*<br>STC4054<br>STNS01 | STBCFG01    | STC3117<br>STC3115     | EFL700A39      |

#### **Typical configuration**



#### MAIN EVALUATION BOARDS



15 W, 5 V- 3 A output CC primary sensing USB adapter based on STCH02

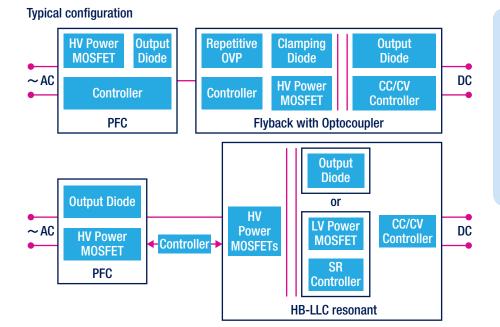
STEVAL-ISA193V1



STEVAL-ISA176V1 5 W, optoless battery charger






Li-Ion/Li-Po linear battery charger evaluation board based on STBC02

#### **Adapters**

The adapter trend goes towards a significantly higher efficiency level, especially in partial load conditions, as well as towards their miniaturization (slimmer and lighter). Adapters require ICs enabling high efficiency with good EMI performance and low standby power, high performance MOSFETs in small packages and protections for high reliability and safety. For this purpose, ST offers a wide portfolio of dedicated ICs including PFC controllers working in Transition Mode (TM), smart analog controllers for HB-LLC resonant circuits as well as for synchronous rectification (dedicated to flyback/forward or HB-LLC circuits). The new combo controller (STCMB1) is able to manage both PFC and DC-DC stages. In addition to the high-voltage MDmesh<sup>™</sup> MOSFETs series and the low-voltage STripFET MOSFETs, new FERD diodes, new STRVS protections against repetitive over-voltages and voltage reference complete our silicon offer for adapter needs. ST's DC-DC converters guarantee high power density for post-regulation.



|                |                                   | Off                           | line                          |                             |        | Power N                                                                      | <b>MOSFETs</b>                                                                        | Repet.                | Clamping           | Output                                             | CC/CV           | Volt.          | DC-DC  |                 |
|----------------|-----------------------------------|-------------------------------|-------------------------------|-----------------------------|--------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|--------------------|----------------------------------------------------|-----------------|----------------|--------|-----------------|
|                |                                   | conv                          | erters                        | Contr                       | ollers | HV                                                                           | LV                                                                                    | overvolt.<br>protect. | diodes             | diodes                                             | contr.          | ref.           | conv.  | LDO             |
| Flyback        | Regulation<br>with<br>optocoupler | VIPer*5<br>VIPer*7<br>VIPer*8 | VIPer0P<br>VIPer*1<br>VIPer*6 | L6566B<br>L6566A            | STCH02 | ST*N80K5<br>ST*N90K5<br>ST*N95K5                                             | -                                                                                     | STRVS*                | STTH*06<br>STTH*08 | STPS*<br>FERD*45<br>FERD*50                        | TSM10*<br>SEA0* | T*431<br>T*432 | _      | ST715           |
|                | PSR-CV                            | -                             | ALTAIR*                       |                             | -      | -                                                                            |                                                                                       |                       | STTH*10            | FERD*60<br>FERD*100                                | 3LAU            | -              |        | LDK320          |
| PFC<br>Boost   | тм                                |                               | -                             | L6562A*<br>L6563*<br>L6564* | CTOMP1 | ST*N50M2<br>ST*N60M2<br>ST*N65M2<br>ST*N55M5<br>ST*N65M5<br>ST*N60M6         | -                                                                                     | -                     | -                  | STTH*L06<br>STTH*06                                | -               | -              | -      | -               |
| DC-DC<br>stage | HB-LLC                            |                               | -                             | L6599A*<br>L6699            | STCMB1 | ST*N50DM2<br>ST*N60DM2<br>ST*N60M2<br>ST*N60M2-EP<br>ST*N65M2-EP<br>ST*N60M6 | -                                                                                     | -                     | -                  | STPS*<br>FERD*45<br>FERD*50<br>FERD*60<br>FERD*100 | TSM10*<br>SEA0* | T*431<br>T*432 | ST1S3* | ST715<br>LDK320 |
|                | Flyback                           |                               |                               | STSR30                      |        |                                                                              | ST*110N10F7                                                                           |                       |                    |                                                    |                 |                |        |                 |
|                | Forward                           |                               |                               | STSR2*                      |        |                                                                              | ST*100N10F7                                                                           |                       |                    |                                                    |                 |                |        |                 |
| Sync<br>rect.  | HB-LLC                            |                               | -                             | SRK2000<br>SRK2001          | A      | -                                                                            | STL*NS3LLH7<br>ST*N4LF7 <sup>1</sup><br>ST*N6F7<br>STL130N8F7<br>ST*N10F7<br>ST*NF20D | -                     | -                  | -                                                  | -               | -              | -      | -               |



#### **MAIN EVALUATION BOARDS**



EVL6566A-75WES4 75 W, PFC + flyback

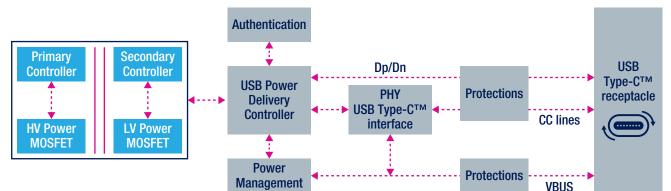


STEVAL-ISA170V1 150 W, PFC + HB-LLC + sync rect.



EVLCMB1-90WADP 90 W, PFC + HB LLC

#### USB Type-C<sup>™</sup> Power delivery chargers and adapters


Modern wall chargers and adapters for consumer and industrial applications take benefit of the USB Type-C<sup>™</sup>, the new slimmer connector featuring reversible plug and cable orientation, allowing designers to develop smaller, thinner and lighter products. Additionally the USB power delivery, which expands USB to deliver up to 100 W (20 V, 5 A) of power, enables more efficient and fast charging over USB.

ST's portfolio for USB Type C and Power Delivery is designed to cope with various hardware/ software partitioning solutions in order to best match your specific application requirements and design architecture: controllers ranging from STM32 general purpose MCU to hard-coded solution to fit different use cases and power ratings can be combined with a large product portfolio of protection and filtering covering all the application needs and with highly secure solution using STSAFE secure element family for strong authentication needs.

Certified Middleware Stack (X-CUBE-USBPD) enabling flexibility to various topologies and adaptability to USB specification evolution is also available.

|                            |                      |                                | USB Ty                     | pe-C Power Delive | ry Subsystem                      |                                             |                 |  |  |
|----------------------------|----------------------|--------------------------------|----------------------------|-------------------|-----------------------------------|---------------------------------------------|-----------------|--|--|
|                            | Тур                  | e-C and USB-PD Contr           | ollers                     |                   | Protections                       |                                             |                 |  |  |
|                            |                      | Chipset                        | Hard Coded Authencitcation |                   | ESD & EOS Protections             | ESD & EOS Protections for                   | LDO             |  |  |
|                            | MCUs                 | Type-C<br>Controller/Interface | Controllers                | & Secure MCUs     | for VBUS Power Delivery           | Communication Channel (CC lines)            | 250             |  |  |
| USB Type-C PD              |                      | 071/001/0004                   | 071100 4700                |                   | ESDA17P100-1U2M<br>ESDA25P35-1U1M | ESDALC20-1BF4<br>ESDA5-1BF4<br>ESDZV5H-1BU2 | 07745           |  |  |
| Adapter<br>1 Port Provider | STM32F0*<br>STM32F3* | STUSB1600A<br>STUSB1602A       | STUSB4700<br>STUSB4710A    | STSAFE-A          | ESDA17P50-1U1M<br>ESDA15P60-1U1M  | ESDA8P30-1T21                               | ST715<br>LDK320 |  |  |
|                            |                      |                                |                            |                   | ESDA13P70-1U1M<br>ESDA7P120-1U1M  | ESDA25W5<br>ESDA6V1W5                       |                 |  |  |

#### **Typical configuration**



#### MAIN EVALUATION BOARDS



P-NUCLEO-USB002 STUSB1602A USB Type-C and Power Delivery Nucleo Pack



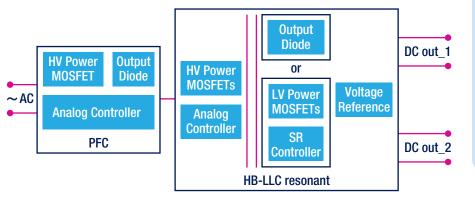
STEVAL-CCCO01 STUSB1600A USB Type-C evaluation board



STEVAL-ISC004V1 STUSB4710A evaluation board



STEVAL-USBPD45H<sup>2</sup> 45 W USB PD Type-C adapter based on STCH02 and STUSB4700


#### TV power supply units (PSU)

In addition to their outstanding image quality, new generation TVs gain attention for their slim silhouette and high energy efficiency; for which the TV's power supply is a key factor. The power supply unit (PSU) requires a low profile to maintain the TV's slim appearance and advanced silicon devices to ensure high efficiency. ST is able to offer both requirements: high-voltage MDmesh<sup>™</sup> MOSFETs (K5, M2, M2-EP, M6, DM2, M5 series), low-voltage STripFET MOSFETs (F7 series), FERD/Schottky and Ultrafast diodes are available in low-profile SMD packages such as PowerFLAT<sup>™</sup> 3.3x3.3 and PowerFLAT<sup>™</sup> 5x6. Furthermore the MDmesh<sup>™</sup> M2 series is available also in the new T0-220FP wide creepage and in the new T0-220FP ultra narrow lead package. STRVS protections against repetitive over-voltages feature small packages including flip-chip, SOD and uQFN. Dedicated smart analog controllers for PFC, HB-LLC resonant circuit, including the new combo controller (STCMB1) for both stages, and those for synchronous rectification enable energy-saving, high-power-density and lower-standby-power design solutions including protection features that are suitable for universal use in TVs of all sizes. The new generation of TV digital power supply units based on our STM32 microcontrollers or STNRG digital controllers guarantee more efficient and flexible solutions.



|                |         |                             | Controll | ers                                | Gate                    | Power I                                                                   | MOSFETs                                                                 | Ponot ovorvelt              | Clomning                      |                                                          | Volt                                                                           | DC-DC                                                   |
|----------------|---------|-----------------------------|----------|------------------------------------|-------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|-------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|
|                |         | Ana                         | alog     | MCU and digital                    | drivers                 | HV                                                                        | LV                                                                      | Repet overvolt.<br>protect. | Clamping<br>diodes            | Output diodes                                            | ref.                                                                           | conv.                                                   |
| Flyback        | ſ       | L6566A<br>L6566B            |          | -                                  | -                       | ST*N80K5<br>STxN90K5<br>ST*N95K5                                          | -                                                                       | STRVS*                      | STTH*06<br>STTH*08<br>STTH*10 | STPS*<br>FERD*45<br>FERD*60<br>FERD*100<br>STPS*LCD170CB | T*431<br>T*432                                                                 | -                                                       |
| PFC<br>Boost   | ССМ     | L4981*<br>L4984D            |          | STM32F0*<br>STM32F1*<br>STM32F334  | TD35*<br>PM8841         | ST*N60M2 <sup>2</sup><br>ST*N65M2<br>ST*N65M5                             | -                                                                       | -                           | -                             | STTH*R06<br>STTH*T06<br>STPSC*065<br>(SiC Diodes)        | T*431           T*432           CB           -           T*431           T*432 | -                                                       |
|                | тм      | L6562A*<br>L6563*<br>L6564* |          | STNRG*                             | PM8851                  | ST*N60M6                                                                  |                                                                         |                             |                               | STTH*L06<br>STTH*06                                      |                                                                                |                                                         |
| DC-DC<br>stage | HB-LLC  | L6599A*<br>L6699            | STCMB1   | STM32F0*<br>STM32F301<br>STM32F324 | L638*<br>L639*<br>L649* | ST*N50DM2<br>ST*N60DM2<br>ST*N50M2<br>ST*N60M2<br>ST*N60M2-EP<br>ST*N60M6 | -                                                                       | -                           | -                             | STPS*                                                    |                                                                                | ST1S0*<br>ST1S12<br>ST1S3*<br>ST1S4*<br>ST1S50<br>L598* |
| Sync<br>rect.  | HB-LLC  | SRK2000/<br>SRK2001         |          |                                    | PM8834                  | -                                                                         | STL*NS3LLH7<br>ST*N4LF7 <sup>1</sup><br>ST*N6F7<br>ST*N10F7<br>ST*NF20D | -                           | -                             | -                                                        | -                                                                              | -                                                       |
|                | Flyback | STSR30                      |          | -                                  | -                       | -                                                                         | ST*110N10F7<br>ST*100N10F7                                              | ]                           |                               |                                                          | -<br>T*431<br>T*432                                                            |                                                         |

#### **Typical configuration**



#### **MAIN EVALUATION BOARDS**



EVLSTNRG-170W 170 W, digital solution PFC+ HB-LLC

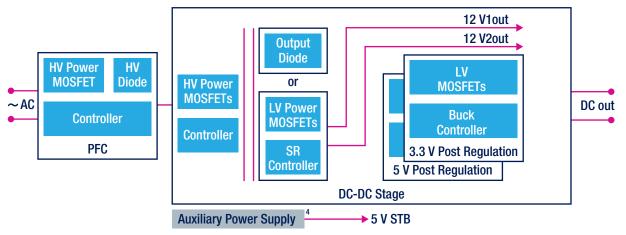


EVL185W-LEDTV

185 W, analog solution PFC + HB-LLC

Note 1: MP Q4 2017 2: 600 V MDmesh™ M2 series is available also in the new T0-220FP wide creepage and in the new T0-220FP ultra narrow lead \* is used as a wildcard character for related part number

#### **Desktop PCs**


The requirements for the standard ATX PC power market are a small form factor with better performance.

An intelligent control scheme that enables the adaption of load variation to minimize power consumption, together with optimized power semiconductors, is the key in meeting market demands. The smart L4984D PFC controller operating with ST's proprietary CCM technique, high-voltage MDmesh<sup>™</sup> MOSFETs used for the PFC and DC-DC stages, low-voltage STripFET MOSFETs for synchronous rectification, and SiC diodes (STPSC\*) help designers develop the best possible PC power supply solutions to improve efficiency. Dedicated smart analog controllers allow a tailored solution for the main topologies used in the DC-DC stage with the STCMB1 combo controller (driving PFC + HB-LLC resonant circuits) and in the synchronous rectification stage with other ICs. ST's DC-DC converters guarantee high power density for the post-regulation.



|                         |                                                                                                             | Contro                             | ollore | Power N                                         | <b>NOSFETs</b>                                           | Output diodes                                     | DC-DC            | E-fuses                    | LDO              |
|-------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------|--------|-------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|------------------|----------------------------|------------------|
|                         |                                                                                                             | Contro                             | Ullers | HV                                              | LV                                                       |                                                   | converters       | E-IUSES                    | LDU              |
| PFC<br>Boost            | ССМ                                                                                                         | L4981*<br>L4984D                   |        | ST*N60M2 <sup>2</sup><br>ST*N65M2 -<br>ST*N65M5 |                                                          | STTH*R06<br>STTH*T06<br>STPSC*065<br>(SiC Diodes) | -                |                            | -                |
| Boost<br>TM<br>HB-LLC   |                                                                                                             | L6562A*<br>L6563*<br>L6564* STCMB1 |        |                                                 |                                                          | STTH*L06<br>STTH*06                               |                  | - STEF01                   |                  |
| PC-DC                   | HB-LLC                                                                                                      | L6599A*<br>L6699                   |        | ST*N50DM2<br>ST*N60DM2                          |                                                          | STPS*<br>FERD*45                                  | ST1S3*<br>ST1S4* | STEF01<br>STEF05<br>STEF12 | LDF<br>LDFM      |
| stage                   | Asym HB                                                                                                     | L6591                              |        | ST*N60M2<br>ST*N60M2-EP<br>ST*N60M6             | -                                                        | FERD*60<br>FERD*100                               | ST1S50<br>L598*  | SIEFIZ                     | LDK320<br>LDL212 |
|                         | HB-LLC                                                                                                      |                                    |        |                                                 | STL*NS3LLH7                                              |                                                   |                  |                            |                  |
| Sync<br>rect.           | PFC<br>Boost<br>TM<br>TM<br>DC-DC<br>stage<br>Asym HB<br>HB-LLC<br>Sync<br>rect.<br>Asym HB<br>Post<br>Buck | SRK2000A<br>SRK2001                |        | -                                               | ST*N4LF7 <sup>1</sup><br>ST*N6F7<br>ST*N10F7<br>ST*NF20D | -                                                 | -                |                            | -                |
| Post<br>Regulation Buck |                                                                                                             | L672*<br>L673*<br>PM6680A          |        | -                                               | STD90NS3LLH7<br>STL60N3LLH5                              | -                                                 | -                | -                          | -                |

#### **Typical configuration**



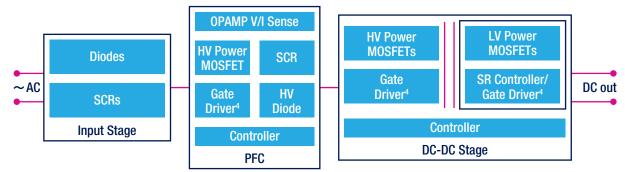
#### **MAIN EVALUATION BOARDS**



EVL400W-ADP/ATX 400 W, PFC CCM + HB-LLC + sync rect.

#### Servers and telecoms: AC-DC power supply

Stringent international standards require for Server/Telecoms power supply greater efficiency, increased power density, faster and more reliable protection functions, increased flexibility and monitoring that are achievable using a proper mix of analog or dedicated digital controllers with advanced power discrete and analog ICs.


ST offers a high-performing product portfolio reducing the total cost of the solution: SiC diodes (STPSC\*), high-voltage MDmesh<sup>™</sup> MOSFETs (for PFC and DC-DC stages), low-voltage STripFET MOSFETs (for synchronous rectification stage), new STDRIVEsmart gate drivers (L639\*, L649\*). Smart controllers are available for the mentioned stages. For higher efficiency and power density systems, ST can offer also the breakthrough SiC MOSFET devices and the latest digital controller STNRGPF01.

High robusteness against the inrush current is ensured by new SCRs in the front end stage. For the post-regulation, from 48 V to point-of-load (CPUs, memories and ASICs) , ST's multi-IC direct power conversion enables a more efficient approach.



|       |                                | SCRs                                                                                          | Cont             | rollers                                       | Gate                               | Power M                                                                 | OSFETs               | Diodes                    |                | -DC<br>erters    | E fuece                    | s LDO & Op Amps              |
|-------|--------------------------------|-----------------------------------------------------------------------------------------------|------------------|-----------------------------------------------|------------------------------------|-------------------------------------------------------------------------|----------------------|---------------------------|----------------|------------------|----------------------------|------------------------------|
|       |                                | SUNS                                                                                          | Analog           | MCU and digital                               | drivers                            | HV                                                                      | LV                   | Dioues                    | HV             | LV               | E-IUSES                    |                              |
| •     | tage<br>& inrush<br>: limiter) | TN1515-600B<br>TN2015H-6<br>TN4015H-6<br>TN5015H-6<br>TM8050H-8<br>TN3050H-12Y<br>TN5050H-12Y | -                | -                                             | -                                  | -                                                                       | -                    | STBR3012<br>STBR6012      | -              | -                | -                          | -                            |
|       | Boost                          |                                                                                               |                  |                                               |                                    | ST*N60M2<br>ST*N65M2                                                    |                      | STTH*R06                  |                |                  |                            |                              |
|       | Interl.<br>Boost               |                                                                                               | L4981*           | OTHIOLIO                                      | 2F301 PM8851<br>2F334 PM8834<br>G* | ST*N65M5<br>ST*N60M6                                                    |                      | STTH*T06                  |                |                  |                            | _                            |
| PFC   | Bridgeless                     |                                                                                               | L4984D           | STM32F301<br>STM32F334<br>STNRG*<br>STNRGPF01 |                                    | SCT*35N65G2V <sup>1</sup><br>SCT*90N65G2V <sup>1</sup><br>(SiC MOSFETs) |                      | STPSC*065<br>(SiC Diodes) | -              | -                |                            |                              |
|       | Totem<br>Pole                  | TN3050H-12WY<br>TN5050H-12WY                                                                  |                  |                                               | STGAP1AS                           | SCT*35N65G2V<br>SCT*90N65G2V <sup>1</sup><br>(SiC MOSFETs)              |                      | STTH30L06*<br>STBR*012*   |                |                  | 075504                     | TN3050H-12WY<br>TN5050H-12WY |
|       | HB-LLC                         |                                                                                               | L6599A*<br>L6699 |                                               |                                    | ST*N50DM2                                                               |                      | STPS*                     | L698*          |                  | STEF01<br>STEF05<br>STEF12 | LDF<br>LDFM                  |
| DC-DC | HB-LC                          |                                                                                               |                  |                                               | L638*                              | ST*N60DM2<br>ST*N60M2                                                   |                      | FERD*45<br>FERD*50        | ST1S14         | ST1S3*<br>ST1S4* | UTEI TE                    | LD39050<br>LD39100           |
| stage | FB-PS                          | -                                                                                             |                  |                                               | L639*<br>L649*                     | ST*N65DM2                                                               | -                    | FERD*60                   | L7985<br>L7986 | ST1S50           |                            | LD39200                      |
|       | Asym HB                        |                                                                                               | L6591            | STM32F334<br>STNRG*                           |                                    | ST*N60DM6<br>ST*N65DM6 <sup>3</sup>                                     |                      | FERD*100<br>STTH*         | L7987*         | L598*            |                            | LDL112<br>LDL212<br>LD59100  |
| Sync  | HB-LLC                         | SRK2000A<br>SRK2001                                                                           |                  | DM8834                                        | _                                  | STL*NS3LLH7<br>ST*N4LF7 <sup>2</sup><br>ST*N6F7                         | _                    | _                         |                |                  | _                          |                              |
| rect. | Asym HB                        |                                                                                               | SRK2001          | PM8834                                        |                                    | -                                                                       | ST*N10F7<br>ST*NF20D | -                         | -              | -                |                            | -                            |

#### **Typical configuration**



#### **MAIN EVALUATION BOARDS**



EVL400W-ADP/ATX 400 W, PFC (CCM) + HB-LLC + sync rect.



STEVAL-ISA172V2 2 kW, multi-phase interl. Boost PFC + FB-PS conv.



STEVAL-ISA147V3 500 W, bridgeless PFC + HB-LLC conv. + sync rect.

STEVAL-ISF003V1

Up to 7.4 kW, digital inrush current limiter based on SCRs



EVLSTNRG-1kW 1 kW, multi-phase interl. HB-LC conv.

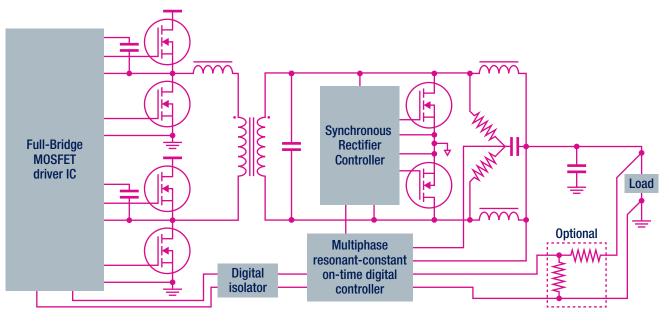


EVAL-IPFC01V1 3 kW three-channel interleaved PFC



#### Servers and telecoms: 48 V direct conversion to CPUs, memories and ASICs

Cloud applications including Internet of Things, smartphone apps, and online services are executed in large datacenters comprising thousands of individual servers.


ST has developed a multi-IC solution called Isolated Resonant Direct Conversion technology, enabling a very effective distributed approach, reducing intermediate conversion steps and resulting in a more efficient and reliable system. The multi-IC solution is based on the STRG02 synchronous rectifier capable of zero-voltage and zero-current operation, the STRG04 high-voltage full-bridge MOSFET driver IC able to drive a wide range of external MOSFETs or GaN-based switches with programmable dead time and the STRG06 multiphase resonant-constant on-time digital controller with PMBusTM, supporting up to 6 interleaved converters, able to deliver output voltage from 0.5 to 12 V and to support output power levels from 50 to more than 300 W. ST's turnkey solution generates flat efficiency curves ensuring the highest level of conversion both for light loads and high current demand.



All primary and secondary power MOSFETs always work at zero current and zero voltage. Power and heat come only from conduction losses, heatsinks. and not from the switching activity. Each power MOSFET produces a minimum amount of heat removing the need of expensive and complex heatsinks.

|               |                                                        | Controllers | Drivers | LV Power MOSFETs             | DC-DC Converter | LDO              | eFuse  |
|---------------|--------------------------------------------------------|-------------|---------|------------------------------|-----------------|------------------|--------|
| Power Cell    | Full Bridge                                            | -           | STRG04  | STL120N8F7<br>STL35N75LF3    |                 | LDK220<br>LDK320 |        |
| Fower Gen     | Synchronous Rectifier                                  | -           | STRG02  | STL100N12F7<br>STL260N45LF71 | ST1S40          |                  | STEF01 |
| Control Stage | Multiphase (up to 6 interleaved)<br>Resonant Converter | STRG06      | -       | -                            |                 | -                |        |

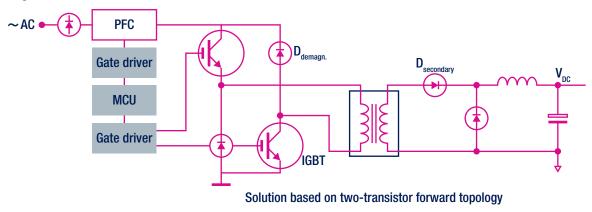
#### **Typical configurations**



#### MAIN EVALUATION BOARD



- ST has developed software tools, a GUI and several reference designs available on request and including:
- 54 V/12 V, 42 A 500 W: 96.5% peak efficiency; size 4.3 inch2
- 54 V/3.3 V, 46 A 150 W: 95% peak efficiency; size 2.07 inch2
- 54 V/1 V, 78 A 78 W: 92.7% peak efficiency; size 1.1 inch2
- 54 V/DDR4, 120 A: 93.2% peak efficiency; size 3.87 inch2
- 54 V/CPU, VR13 165 W (TDP) and 360 W (peak power): 93.3% peak efficiency


#### **INDUSTRIAL WELDING**

High efficiency and high switching frequency as well as reduced size and weight are the main requirements for welding applications. ST's broad power portfolio offers energy and costsaving products to meet the various welding power ranges. Both PFC and DC-DC stages, phase-shifted full-bridge (PS-FB) as well as two-transistor forward (TTF), can be managed by high-performing STM32 microcontrollers. New high-efficiency and high-power-density SiC MOSFETs (SCT\*N120), VHV Power MOSFET or the suitable high-frequency series of trench-gate field-stop IGBTs driven by STDRIVEsmart gate drivers (L639\*, and L649\*) offer optimum performance and reduce cooling requirements and heatsink size while the new STGAP1AS galvanically-isolated drivers guarantee high safety and reliability of the welding. Using SiC diodes (STPSC\*) further improves system efficiency, taking advantage of silicon carbide's superior physical characteristics over silicon.



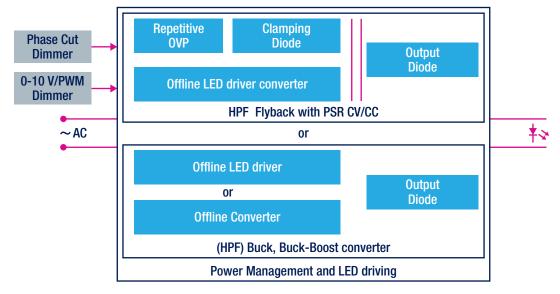
|          |       | MCUs                               | Gate drivers                                    | IGBTs                                        | HV power              |                                                               | Diodes                                    |                                | DC-DC c                 | onverters                            |
|----------|-------|------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------|---------------------------------------------------------------|-------------------------------------------|--------------------------------|-------------------------|--------------------------------------|
|          |       | INIGUS                             | uale unvers                                     |                                              | MOSFETs               | Boost                                                         | Demagn                                    | Secondary side                 | HV                      | LV                                   |
| PFC Boos | t     | STM32F0*<br>STM32F301<br>STM32F334 | TD35*<br>PM8834<br>PM8841<br>PM8851<br>STGAP1AS | STG*H65FB<br>STG*V60F<br>STG*H120F2 SCT*N120 |                       | STTH*R06<br>STTH*T06<br>STTH*W06<br>STPSC*065<br>(SiC Diodes) | -                                         | -                              |                         | -                                    |
| DC-DC    | TTF   | STM32F334                          | L638*<br>L639*<br>L649*                         | - 51G <sup>-</sup> H120F2                    | ST*N90K5<br>ST*N95DK5 | _                                                             | STTH*R06<br>STTH*06<br>STTH*10<br>STTH*12 | STTH*W03 L59                   | L698*<br>L597*<br>L7985 | ST1S0*<br>ST1S12<br>ST1S3*<br>ST1S40 |
| stage    | PS-FB |                                    | STGAP1AS                                        | STG*H65DFB<br>STG*V60DF<br>STG*H120DF2       |                       |                                                               | -                                         | STTH240F04TV1<br>STPS200170TV1 | L7986<br>L7987*         | ST1S50<br>L598*                      |

#### **Typical configuration**



#### **LED LIGHTING - GENERAL ILLUMINATION**

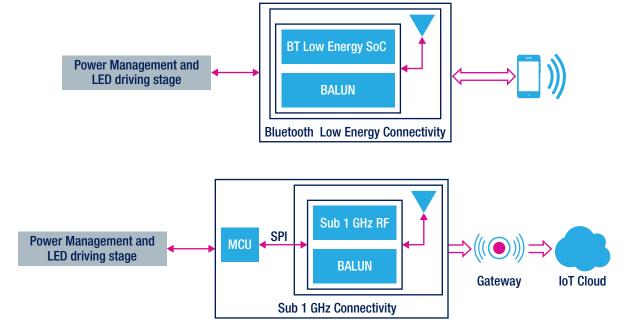
#### **Residential lighting**


LED efficacy and driver IC market requirements are constantly evolving. Residential lighting applications need a high integration level, high efficiency, high power factor (PF), long lifetime, and dimming capabilities as well as a low system cost and component count.

ST offers a wide portfolio of highly integrated offline converters up to 15 W (each IC includes a power MOSFET combined with control and protection circuitry on a single chip) working with a high breakdown voltage of 800 V. Among these, HVLED805, HVLED807PF and HVLED815PF LED driver converters work with a high PF and in constant-current/constant-voltage mode primary-side regulation (PSR-CC/CV) avoiding the need of secondary side regulation ICs and opto-coupler in the circuit, thus reducing costs. Thanks to its high-power-density DC-DC LED driver converters (controller + MOSFET in the same chip), ST can support MR16 LED replacement lamps for halogen light bulbs.



|                            |           | Offline LED<br>driver converters |                               | onverters<br>• LED driving | CC/CV<br>controllers | Repetitive overvoltage protections | Clamping<br>diodes | Output<br>diodes                                                | DC-DC LED<br>driver converters |
|----------------------------|-----------|----------------------------------|-------------------------------|----------------------------|----------------------|------------------------------------|--------------------|-----------------------------------------------------------------|--------------------------------|
| MR16 haloge<br>replacement | n bulb    | -                                |                               | -                          | -                    | -                                  | -                  | STPS*170AF<br>STPS3170UF<br>STPS4S200UF<br>STPSxxZF<br>STTHxxZF | LED5000<br>LED6000             |
| Buck, Buck-b               | oost      | -                                | VIPer0P<br>VIPer*1<br>VIPer*6 |                            | -                    | -                                  | -                  | STTH*                                                           | -                              |
| HPF Buck-bo                | ost       | HVLED805<br>HVLED807PF           |                               | -                          |                      | -                                  | -                  |                                                                 |                                |
| HPF Flyback                | PSR-CC/CV | HVLED815PF                       |                               | -                          | -                    |                                    |                    |                                                                 |                                |
|                            | SSR-CC/CV |                                  | VIPer*5<br>VIPer*7<br>VIPer*8 | VIPer0P<br>VIPer*1         | TSM10*<br>SEA0*      | STRVS*                             | STTH*06<br>STTH*08 | FERD*100<br>STPS*150<br>STPS*170                                | -                              |
| Flyback                    | PSR-CV    | -                                | -                             | - VIPer*6                  |                      |                                    | STTH*10            | STPS 170<br>STPS*200                                            |                                |
| P                          | PSR-CC/CV |                                  | ALTAIR*                       |                            | -                    |                                    |                    |                                                                 |                                |


#### **Typical configuration**



ST offers products and solutions to enrich the LED lighting applications with wireless connecitivity.

|                                   | Wireless Connectivity |                      |                                                                  |                                                            |  |  |  |  |  |  |  |  |
|-----------------------------------|-----------------------|----------------------|------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                   |                       | Chipset              | Certified Module                                                 |                                                            |  |  |  |  |  |  |  |  |
|                                   | Connectivity IC       | MCU                  | Balun                                                            |                                                            |  |  |  |  |  |  |  |  |
|                                   | BlueNRG-1             | -                    |                                                                  | SPBTLE-1S                                                  |  |  |  |  |  |  |  |  |
| Bluetooth Low Energy Connectivity | BlueNRG-MS            | STM32F0*<br>STM32L0* | BALF-NRG-02D3                                                    | SPBTLE-RF<br>SPBTLE-RF0                                    |  |  |  |  |  |  |  |  |
| Sub 1 GHz Connectivity            | Spirit1<br>S2-LP      | STM32F0*<br>STM32L0* | BALF-SPI-01D3<br>BALF-SPI-02D3<br>BALF-SP2-01D3<br>BALF-SP2-02D3 | SPSGRF (868 and 915 MHz)<br>SPSGRFC (433, 868 and 915 MHz) |  |  |  |  |  |  |  |  |

#### **Typical configuration**



#### **MAIN EVALUATION BOARDS**



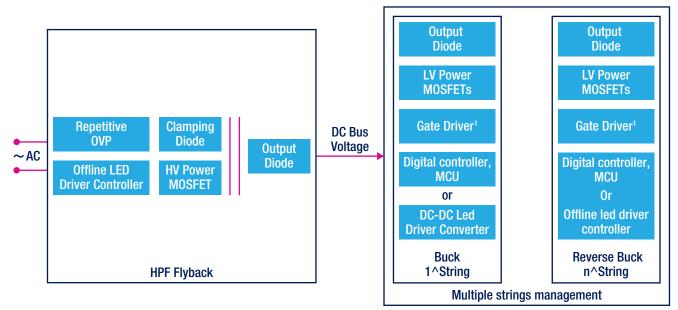
EVLHVLED815W10A 10 W, buck-boost LED driver



STEVAL-ILL082V1/ STEVAL-ILL083V1 Smart home lighting based on HVLED815PF and SPSGRF (STEVAL-ILL082V1) and SPBTLE-RF (STEVAL-ILL083V1)



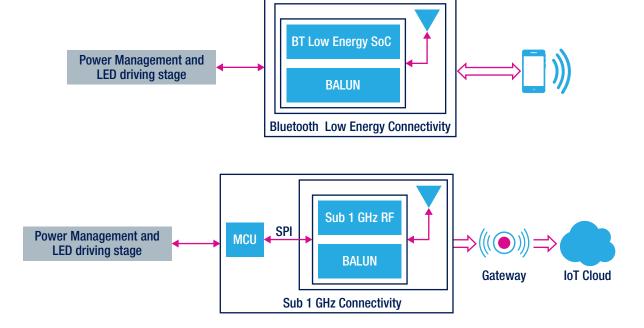
EVALHVLED815W15 15 W, flyback LED driver




#### **Commercial lighting**

Commercial lighting applications usually require more than 20 W, a high power factor, high level of efficiency, cost-saving solution and the possibility of using more than one LED string with remote monitoring. The multiple strings power supply architecture consists of a main power supply (usually a flyback) providing a constant bus voltage and subsequent multiple strings. ST's offline LED controller HVLED001A (for flyback) with constant-voltage primary-side regulation (PSR-CV) is available for the main SMPS. Multiple strings can be managed using analog or digital means. High power-density DC-DC LED driver buck converters (LED2000, LED2001, LED5000 and LED6000) or the new HVLED002 controller for reverse buck, are used for an analog implementation. To digitally manage multiple strings stage (reverse buck), ST offers STLUX, a new series of dedicated digital lighting controllers as well as STM32 high-performance microcontrollers. ST's high-voltage MDmesh<sup>TM</sup> K5 MOSFETs series (suggested for flyback) and the low-voltage STripFET MOSFET series (used for reverse buck topologies) ensure all solutions are very efficient and reliable.




|                 |                 | Offline LED          | Digital                          | Gate                                | Power M                          | OSFETs   | Clamping                      | Repetitive overvoltage   | Output                                   | DC-DC LED driver                         |
|-----------------|-----------------|----------------------|----------------------------------|-------------------------------------|----------------------------------|----------|-------------------------------|--------------------------|------------------------------------------|------------------------------------------|
|                 |                 | driver<br>controller | controllers, MCUs                | drivers                             | HV                               | LV       | diodes                        | protections              | diodes                                   | converters                               |
| HPF Flyb        | ack             | HVLED001A            | -                                | -                                   | ST*N80K5<br>ST*N90K5<br>ST*N95K5 | -        | STTH*06<br>STTH*08<br>STTH*10 | STRVS*                   | FERD*100<br>STPS*150                     | -                                        |
| Sepic           |                 |                      | -                                | -                                   | ST*N60M2<br>ST*N60DM2            | -        | -                             | - STPS*170<br>- STPS*200 |                                          | -                                        |
| Multiple        | Buck            | -                    | STLUX*<br>STM32F334<br>STM32F301 | L6395                               | -                                | ST*N6F7  | -                             | -                        | FERD15S50B<br>STPS*170AF<br>STPS*4S200UF | LED2000<br>LED2001<br>LED5000<br>LED6000 |
| strings<br>mgmt | Reverse<br>buck | HVLED002             | STM32F301<br>STM32F0*<br>STM8S*  | TD35*<br>PM8834<br>PM8841<br>PM8851 | -                                | ST*N10F7 | -                             | -                        | STPS 432000F<br>STPSxxZF<br>STTHxxZF     | -                                        |



ST offers products and solutions to enrich the LED lighting applications with wireless connecitivity.

|                                   | Wireless Connectivity |                      |                                                                  |                                                            |  |  |  |  |  |  |  |
|-----------------------------------|-----------------------|----------------------|------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|--|
|                                   |                       | Chipset              | Certified Module                                                 |                                                            |  |  |  |  |  |  |  |
|                                   | Connectivity IC       | MCU                  | Balun                                                            |                                                            |  |  |  |  |  |  |  |
|                                   | BlueNRG-1             | -                    |                                                                  | SPBTLE-1S                                                  |  |  |  |  |  |  |  |
| Bluetooth Low Energy Connectivity | BlueNRG-MS            | STM32F0*<br>STM32L0* | BALF-NRG-02D3                                                    | SPBTLE-RF<br>SPBTLE-RF0                                    |  |  |  |  |  |  |  |
| Sub 1 GHz Connectivity            | Spirit1<br>S2-LP      | STM32F0*<br>STM32L0* | BALF-SPI-01D3<br>BALF-SPI-02D3<br>BALF-SP2-01D3<br>BALF-SP2-02D3 | SPSGRF (868 and 915 MHz)<br>SPSGRFC (433, 868 and 915 MHz) |  |  |  |  |  |  |  |

#### **Typical configuration**



#### **MAIN EVALUATION BOARDS**

STEVAL-ILL080V1 18 W Tube replacement zero ripple LED driver using HVLED001A



STEVAL-ILL069V2 35 W, analog power supply (CV<sub>out</sub>) for LED driving



STEVAL-ILL070V41

35 W, analog power supply (CC/CV) for single string led driver

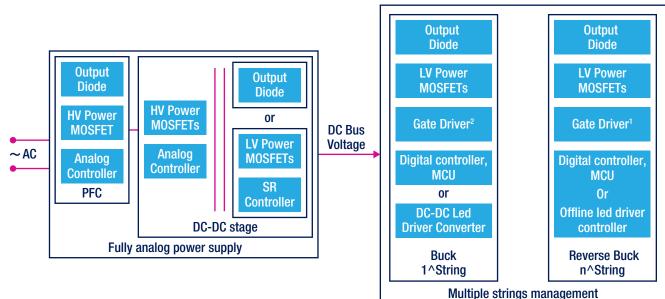


STEVAL-ILL077V1 60 W, digital multiple-string LED driver



STEVAL-ILL051V2 18 V-3 A, buck LED driver converter



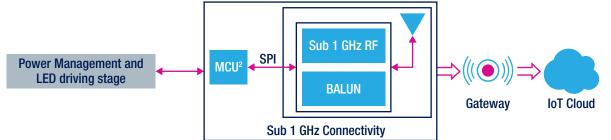

STEVAL-ILL054V2 18 V-4 A, buck LED driver converter

#### **Street lighting**

Energy efficiency, long lifetime, remote control, small form factor and extended temperature range (-40 °C) are the main requirements for the LED street lighting market. For single string, it is possible to implement the primary side regulation (PSR-CC) control technique using a digital approach with a PFC regulator followed by a HB-LC resonant stage. The multiple strings power supply architecture consists of a main power supply providing a constant bus voltage and a subsequent multiple strings. Usually the main power stage, consisting of a high power factor (HPF) flyback converter or a power factor correction (PFC) controller combined with an LLC resonant converter, provides the constant voltage bus. The subsequent LED strings control is implemented by multiple buck or reverse buck converters. ST offers analog and digital solutions to cover both stages (power and LED control).



|                             |                 |                             |            | ers Controllers,<br>MCUs                     | Gate                                | Power N                          | IOSFETs                                                                 | Clamping                      | Repetitive                 | Output                                            | DC-DC                    | DC-DC                    |
|-----------------------------|-----------------|-----------------------------|------------|----------------------------------------------|-------------------------------------|----------------------------------|-------------------------------------------------------------------------|-------------------------------|----------------------------|---------------------------------------------------|--------------------------|--------------------------|
|                             |                 | Analog co                   | ontrollers |                                              | drivers                             | HV                               | LV                                                                      | diodes                        | overvoltage<br>protections | diodes                                            | LED driver<br>converters | Conv.                    |
| HPF<br>Flyback              | PSR-CV          | HVLED00 <sup>-</sup>        | 1A         | -                                            | -                                   | ST*N80K5<br>ST*N90K5<br>ST*N95K5 | -                                                                       | STTH*06<br>STTH*08<br>STTH*10 | STRVS*                     | STPS*<br>FERD*<br>STTH*                           | -                        | -                        |
| PFC<br>Boost                | ССМ             | L4981*<br>L4984D            |            |                                              | TD35*<br>PM8841                     | ST*N60M2<br>ST*N65M2             | -                                                                       |                               | -                          | STTH*R06<br>STTH*T06<br>STPSC*065<br>(SiC Diodes) | -                        | -                        |
|                             | тм              | L6562A*<br>L6563*<br>L6564* | STCMB1     | STLUX*                                       | PM8851                              | ST*N60M2-EP                      |                                                                         |                               |                            | STTH*L06<br>STTH*06<br>STTH15AC06*                |                          |                          |
| DC-DC                       | HB-LLC          | L6599A*<br>L6699            |            | STM32F0*<br>STM32F301                        | 1 L638*                             | ST*N50DM2<br>ST*N60DM2           |                                                                         |                               |                            | STPS*                                             |                          | L698*<br>ST1S14          |
| stage                       | HB-LC           | -                           | -          | STM32F334                                    | L639*<br>L649*                      | ST*N60M2<br>ST*N65DM2            | -                                                                       |                               |                            | FERD30M45D<br>FERD40U50CFP                        |                          | L7985<br>L7986<br>L7987* |
| Sync rec                    | it.             | SRK2000/<br>SRK2001         | Ą          |                                              | PM8834                              |                                  | STL*NS3LLH7<br>ST*N4LF7 <sup>1</sup><br>ST*N6F7<br>ST*N10F7<br>ST*NF20D |                               | -                          | -                                                 | _                        | -                        |
| Multiple                    | Buck            |                             | -          | STLUX*                                       | L6395                               |                                  |                                                                         | -                             | -                          | STPS*                                             | LED5000<br>LED6000       | -                        |
| Multiple<br>strings<br>mamt | Reverse<br>buck | HVLED002                    | 2          | STM32F334<br>STM32F301<br>STM32F0*<br>STM8S* | TD35*<br>PM8834<br>PM8841<br>PM8851 | ST*N60M2<br>ST*N60M2-EP          | ST*N6F7<br>ST*N10F7                                                     | -                             | -                          | FERD*<br>STTH*<br>(≥200 V series)                 | -                        | -                        |




#### Typical configuration

In regard to analog solutions, ST's has a wide offer. The new flyback offline LED controllers (HVLED001A) with constant-voltage primary-side regulation (PSR-CV) does not need an opto-coupler and voltage reference in the circuit (lower costs). The new STCMB1 smart offline combo controller for PFC and HB-LLC resonant circuits, the new HVLED002 led driver controller for reverse buck, and the dedicated high-voltage/ high-current DC-DC LED driver converters (LED5000 and LED6000) for LED strings management ensure easy and efficient analog solutions. For high-efficiency and flexible digital solutions, ST offers STLUX, a new series of dedicated digital lighting controllers, along with high-performance STM32 microcontrollers to manage both power and LED driving (reverse buck) stages. The new high-voltage MDmesh™ MOSFETs series (suggested for flyback, PFC and LLC stages), the low-voltage STripFET MOSFETs series (used in reverse buck topologies) and the SiC diodes (STPSC\*) make sure that solutions are very efficient and reliable.

| Wireless Connectivity  |                  |                      |                                                                  |                                                            |  |  |  |  |  |  |
|------------------------|------------------|----------------------|------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|--|
|                        |                  | Chipset              | Certified Module                                                 |                                                            |  |  |  |  |  |  |
|                        | Connectivity IC  | MCU                  | Balun                                                            |                                                            |  |  |  |  |  |  |
| Sub 1 GHz Connectivity | SPIRIT1<br>S2-LP | STM32F0*<br>STM32L0* | BALF-SPI-01D3<br>BALF-SPI-02D3<br>BALF-SP2-01D3<br>BALF-SP2-02D3 | SPSGRF (868 and 915 MHz)<br>SPSGRFC (433, 868 and 915 MHz) |  |  |  |  |  |  |

#### **Typical configuration**



#### MAIN EVALUATION BOARDS



STEVAL-ILL066V2<sup>3</sup> 100 W, digital single-string PSR-CC LED driver



STEVAL-ILL077V1 60 W, digital multiple-string LED driver

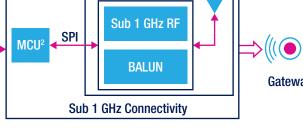


STEVAL-ILL053V1 130 W, analog power supply (CV\_) for LED driving



STEVAL-ILL056V1 48 V-3 A, buck LED driver converter




STEVAL-ILL078V1

60 W, analog power supply (CV out) for LED driving

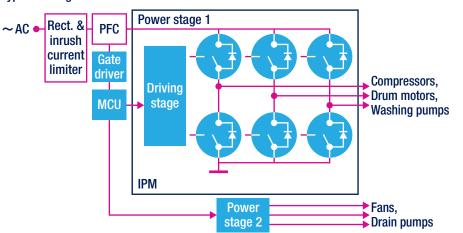
STEVAL-ILL074V1/V2

60 V-1 A, buck LED driver converter





#### **MAJOR HOME APPLIANCES**


#### Refrigeration, washing, drying and miscellaneous equipment

The white goods market requires low-cost and high-energy-efficiency solutions. The refrigeration, washing, drying and the miscellaneous (Air conditioner, water heater) equipment are some of the major home appliance applications that ST, thanks to the its wide product portfolio, is able to satisfy with suitable and dedicated power products for both power factor correction (PFC) and 3-phase inverter stages managed by high-performing STM32 microcontrollers combined with complementary new STDRIVEsmart gate drivers (L639\*, and L649\*). Using new SiC diodes (STPSC\*), high-efficiency PFC is guaranteed by the usage of new high-voltage MDmesh<sup>™</sup> MOSFETs or suitable field-stop trench-gate IGBTs. To reduce the 3-phase inverter CTM design time and implementation efforts, ST offers the SLLIMM<sup>™</sup> family (small low-loss intelligent molded module) of highly-integrated, high-efficiency intelligent power modules (IPM) integrating the power stage ( both on IGBT and MOSFET discretes), driving network and protections and features. Another approach for designing a 3-phase inverter is based on the use of six discrete IGBTs/MOSFETs and gate drivers mentioned before. High- and low-voltage DC-DC converters guarantee high power density for the post-regulation stages. High reliability against the inrush current is ensured by new SCRs in the front-end stage.



|                      |                                         | MCUs                                    | Gate<br>drivers                     | IPM                                                                                                           | IGBTs                                     | HV power<br>MOSFETs | Diodes                             | Linear<br>voltage<br>reg.          |                          | -DC<br>erters<br>LV        | SCRs                                                                                        | Triacs | LED array<br>drivers          |
|----------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|------------------------------------|------------------------------------|--------------------------|----------------------------|---------------------------------------------------------------------------------------------|--------|-------------------------------|
| Rect. & i<br>current |                                         | -                                       | -                                   | -                                                                                                             | -                                         | -                   | STBR3012<br>STBR6012               | -                                  |                          | -                          | TN815-800B<br>TN1215-600B<br>TN1515-600B<br>TN1610H-6<br>TN2015H-6<br>TN4015H-6<br>TN5015-6 | -      | -                             |
|                      |                                         | -                                       | -                                   | -                                                                                                             | -                                         | -                   | -                                  | -                                  |                          | -                          | -                                                                                           | T1635T | -                             |
| PFC                  | Boost<br>Interl.<br>Boost<br>Bridgeless |                                         | TD35*<br>PM8841<br>PM8851<br>PM8834 | -                                                                                                             | STG*V60(D)F<br>STG*H65(D)FB<br>STG*HP65FB | ST^N65M5            | STTH*AC06<br>STTH*R06<br>STPSC*065 | LDF                                |                          | -                          | -                                                                                           | -      | -                             |
| 3-ph                 | Compr.                                  | STM32F0*<br>STM32F103<br>STM32F3* L638* |                                     | TM32F0* STGIF*CH60<br>TM32F103 STGIB*CH60<br>TM32F3* L638* STGIB*M60<br>STIB*60DM2 <sup>1</sup> STG*H60DF ST* |                                           | ST*N60DM2           |                                    | LDFM<br>LDK220<br>LDK320<br>LDK715 | L698*<br>L597*<br>L7985  | ST1S0*<br>ST1S12<br>ST1S3* |                                                                                             | _      | _                             |
| inverter             | Fan                                     | 3111132F4                               | L639<br>L649*                       | STIPNS*M50 <sup>2</sup><br>STIPQ*M60                                                                          | STG*M65DF2                                |                     | -                                  | LDL212                             | L7985<br>L7986<br>L7987* | ST1S40<br>ST1S50           | -                                                                                           | -      | -                             |
|                      | Pumps                                   |                                         |                                     | STGIPNS*H60 <sup>2</sup><br>STGIPQ*C60                                                                        |                                           |                     |                                    |                                    | L1 301                   | L598*                      |                                                                                             |        |                               |
| LED indi             | cator                                   |                                         |                                     |                                                                                                               | -                                         |                     |                                    |                                    |                          |                            | -                                                                                           |        | STP08*<br>STP16*<br>LED1642GW |





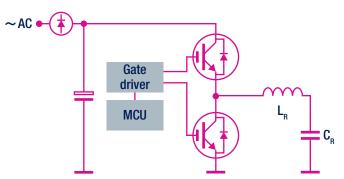
#### **MAIN EVALUATION BOARDS**



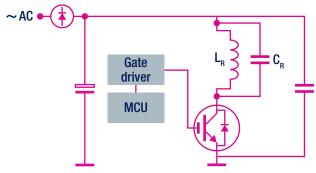
STEVAL-IHT008V1 1 kW, digital inrush current limiter based on Triac



STEVAL-IPM\* 300 W to 3 kW Power board based on SLLIMM™


#### **Induction heating**

The induction heating market demands cost-effective, energy-efficient and reliable solutions. Resonant-switching topologies, based on voltage or current resonance, are the most adopted and can be managed using high-performing STM32 microcontrollers. To best meet these requirements and fit the selected topologies, ST has developed the dedicated IH (1250 V) and HB (650 V) series of trench-gate field-stop IGBTs and we are about to introduce a new 650 V IH series and a 1350 V series. Complementary new STDRIVEsmart gate drivers family (L639\*, L649\*) improves the reliability (robustness and noise immunity) of the application. Depending on your needs, new 8/16 channels LED array drivers allow to have an user-friendly human interface. ST's complete offer is given in the following table.




|                                                        | MCUs                                       | Gate drivers              | IGBTs                                    | LED array drivers            |
|--------------------------------------------------------|--------------------------------------------|---------------------------|------------------------------------------|------------------------------|
| Single-switch<br>quasi-resonant<br>(voltage resonance) | STM8*<br>STM32F100                         | TD35*<br>PM8841<br>PM8851 | STG*IH125DF<br>STG*IH135DLF21            | -                            |
| HB series resonant<br>(current resonance)              | STM32F0*<br>STM32F100                      | L638*<br>L639*<br>L649*   | STG*H65DFB<br>STG*H60DLFB<br>STG*IH65DF1 | -                            |
| User interface<br>(front panel)                        | STM8*<br>STM32F0*<br>STM32F4*9<br>STM32F7* | -                         | -                                        | STP08<br>STP16*<br>LED1642GW |

**Topology example** 



Half-bridge series-resonant induction heating system



Single-switch quasi-resonant induction heating system

#### MAIN EVALUATION BOARD

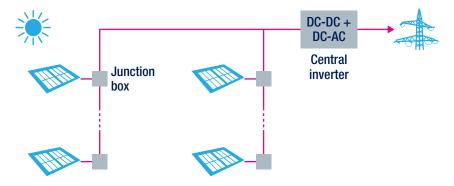


Board available on request 1.8 kW, quasi-resonant induction cooking system

#### **RENEWABLE ENERGY & HARVESTING**

#### **Photovoltaic (centralized)**

Centralized photovoltaic (PV) energy solutions use a central inverter architecture characterized by a single central inverter (where the entire DC output of a PV array is transformed and connected to the AC grid) and, at the panel level, by a junction box that provides only the bypass function and helps prevent localized hotspots. For the junction box, ST offers the new FERD diodes with a very low forward voltage and a low leakage reverse current.


By integrating high-performance STM32 microcontrollers, the new high-efficiency SiC MOSFETs (SCT\*N120), the new trench-gate field-stop IGBTs series, the SiC diodes (STPSC\*) and the new STGAP1AS galvanically-isolated gate drivers, it's possible to guarantee a high-efficiency central inverter implementation.

High- and low-voltage DC-DC converters guarantee high power density for the post-regulation stages. Due to their low per watt costs and the simplicity of design, central inverters are the power conversion systems of choice for large PV power plants.



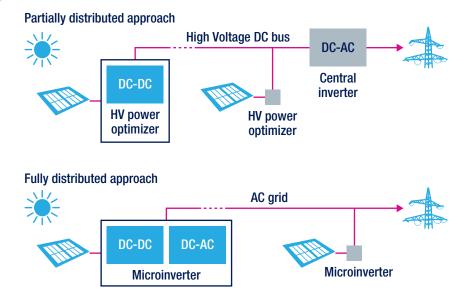
|                     |              |             | MCUs                                         | Gate drivers               | HV power                         | IGBTs                                                                 | Diodes                                                       | Bypass                           | DC-DC c                 | onverters                 |
|---------------------|--------------|-------------|----------------------------------------------|----------------------------|----------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-------------------------|---------------------------|
|                     |              |             |                                              |                            | MOSFETs                          | IUDIS                                                                 | Dioues                                                       | Diodes                           | HV                      | LV                        |
| Junction box        | Junction box |             | -                                            | -                          | -                                | -                                                                     | -                                                            | STPS*30<br>STPS*45<br>FERD30M45D | -                       | -                         |
|                     | DC-DC stage  | FB-PS       | STM32F1*                                     |                            | ST*60DM2<br>ST*65DM2<br>SCT*N120 | -                                                                     | STTH*06<br>STTH*S12<br>STPSC*065<br>STPSC*12<br>(SiC Diodes) |                                  | L6985F<br>L6986         |                           |
| Central<br>inverter |              | FB mix freq | STM32F2*<br>STM32F3*<br>STM32F4*<br>STM32F7* | L639*<br>L649*<br>STGAP1AS |                                  | STG*H65DFB<br>STG*V60DF<br>STG*H120DF2                                | STTH*R06                                                     |                                  | L597*<br>L7985<br>L7986 | ST1S4*<br>ST1S50<br>L598* |
|                     | DC-AC stage  | 3-Level HB  |                                              |                            | SCT*N120                         | STG*H120DF2<br>STG*S120DF3<br>STG*M120DF3<br>STG*H65DFB<br>STG*M65DF2 | STPSC*065<br>STPSC*12<br>(SiC Diodes)                        | -                                | L7987*                  |                           |

#### **Typical configuration**



#### Centralized approach for a solar energy solution

#### **Photovoltaic (distributed)**

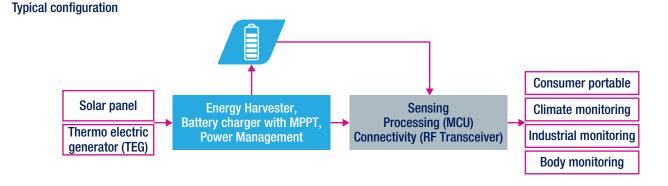

A distributed photovoltaic (PV) energy architecture converts power using an embedded maximum power point tracking (MPPT) mechanism at the PV panel level. A partially distributed approach integrates a power optimizer (a DC-DC converter with MPPT and communication capabilities) and a central inverter for the DC-AC conversion and grid connection. In regards to the power optimizer, the bypass function is covered by ST with the new FERD diodes featuring a very low forward voltage and low leakage reverse current. The new high-efficiency SiC MOSFETs (SCT\*N120) and the new trench-gate field-stop IGBTs series, guarantee a high-efficiency DC-AC central inverter.

The fully distributed approach integrates, at the PV panel level, a microinverter that includes a complete converter (DC-DC with MPPT as well as DC-AC) and manages the AC grid connection. The high-performing STM32 microcontrollers, the new high-efficiency high-voltage MDmesh<sup>™</sup> MOSFET series, the new low-voltage STripFET MOSFET series and the SiC diodes (STPSC\*) guarantee a high-efficiency converter while the new STGAP1AS galvanically-isolated gate drivers offer high safety and reliability. High- and low-voltage DC-DC converters guarantee high power density for the post-regulation stages.



|                              |                |                                   | MOUL                                | Gate     | Power N                              | <b>IOSFETs</b>        |                                       |                        | Bypass                            | DC-DC c                   | onverters |
|------------------------------|----------------|-----------------------------------|-------------------------------------|----------|--------------------------------------|-----------------------|---------------------------------------|------------------------|-----------------------------------|---------------------------|-----------|
|                              |                |                                   | MCUs                                | drivers  | HV LV                                |                       | IGBTs                                 | Diodes                 | Diode                             | HV                        | LV        |
| Power<br>optimizer           | DC-DC<br>stage | lsolated<br>FB boost              | STM32F103<br>STM32F3*<br>STM32F4*   | - L638*  | -                                    | STH*N10F7<br>STH*N6F7 | -                                     | STTH*R06<br>STTH80S06W | STPS*30<br>STPS*45<br>FERD*45     |                           | -         |
| Central DC-AC                | FB mix<br>freq | STM32F103<br>STM32F2*<br>STM32F3* | L638*<br>L639*<br>L649*<br>STGAP1AS | SCT*N120 |                                      | STG*H65DFB            |                                       |                        |                                   |                           |           |
|                              | stage          | 3-level<br>HB                     | STM32F3<br>STM32F4*<br>STM32F7*     |          | (Sic Mosfet)                         | -                     | STG*H120DF2                           | STTH*R06<br>STTH*06    | _                                 | L6985F<br>L6986           |           |
| DC-DC<br>Interl. Bo<br>Micro | oost           | STM32F103                         | TD35*<br>PM8834<br>PM8841<br>PM8851 | -        | STH*N10F3<br>STH*N8F7<br>ST*160N75F3 |                       | STPSC*065<br>STPSC*12<br>(SiC Diodes) | -                      | L597*<br>L7985<br>L7986<br>L7987* | ST1S4*<br>ST1S50<br>L598* |           |
| inverter                     |                |                                   | STM32F3*<br>STM32F4*                | TM32F3*  |                                      | -                     | -                                     |                        |                                   |                           |           |

#### **Typical configurations**




#### Solar – Thermo electric generator (TEG)

Today's Internet of Things (IoT) is based on the exchange of data among remote sensing units and nodes, often in a large number and located in very inaccessible places, necessitating energy-wise and fully autonomous devices to guarantee service continuity and very low maintenance cost. Also consumer portable applications (smarthphone, camera, fitness, etc) need more and more continuous autonomous energy sources. This means using a battery charger powered by a harvested or renewable energy source with high conversion efficiency and its proper battery charging management. To meet this demand, ST offers dedicated products like the SPV1040 high-efficiency low-power solar constant-voltage (CV) battery charger with MPPT for outdoor, and the SPV1050 ultra low power solar and TEG energy-harvesting charger for any battery type and supercapacitor in indoor environments with embedded MPPT and LDOs. These requirements involve not only the electronics but also reliable, good-quality Li-lon batteries. ST also provides ultra-thin, fast recharging Li-lon batteries with a long cycle life and low capacity loss, making them suitable for renewable energy and harvesting applications. The ST devices best suited for each of the most common topologies are listed in the following table.



|        |                  |                    | Battery Charger<br>with MPPT | Battery Charger | Thin-film batteries | Linear voltage<br>regulators |
|--------|------------------|--------------------|------------------------------|-----------------|---------------------|------------------------------|
| PV     | 400 mW to 3 W    | Boost              | SPV1040                      | -               | -                   | STLQ015<br>STLQ020           |
| PV and | TEG Up to 400 mW | Boost & Buck-Boost | SPV1050                      | STBC151         | EFL700A39           | ST715<br>LD39130S            |



#### MAIN EVALUATION BOARDS

STEVAL-GPT001V1<sup>2</sup> Solar Rechargeable Smart Watch with SPV1050

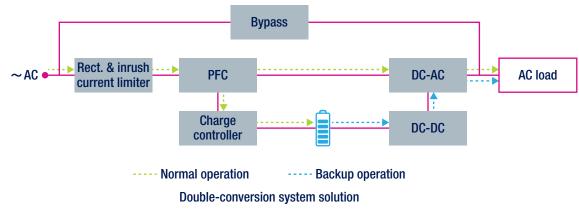


STEVAL-IDS002V1 Autonomus wireless multisensor node powered by PV cells



STEVAL-IDS003V13

Autonomus wireless multisensor node powered by TEG


#### **UNINTERRUPTABLE POWER SUPPLIES (UPS)**

Today the vast increase of sensitive loads due to the explosion in digital technology requires a high-quality supply of electrical power. In addition to its primary function of ensuring the continuity of service, an uninterruptable power supply (UPS) improves the quality of the voltage supplied to the load (computer, industrial processes, instrumentation, telecommunication, etc.). The double-conversion configuration usually is used for high-end applications in particular for medium- or high-power UPSs; offline systems are adopted for low power applications. Each stage of these configurations (PFC, charge controller, etc.) is supported by ST's portfolio. SiC diodes (STPSC\*), new high-voltage MDmesh<sup>™</sup> MOSFETs (M2, DM2, M5 series), new low-voltage STripFET<sup>™</sup> MOSFETs (F6, F7 series), trench-gate field-stop IGBTs, SiC MOSFETs (SCT\*N120), new STGAP1AS galvanically-isolated gate drivers and high-performance STM32 microcontrollers guarantee high reliability and efficiency.



|                            |              | MCUs                              | Gate                                   | 1057                      | Power                                                              | MOSFETs                                    | <b>D</b> : 1                                               | 000                                                                     |        | Linear                | DC-DC           |
|----------------------------|--------------|-----------------------------------|----------------------------------------|---------------------------|--------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|--------|-----------------------|-----------------|
|                            |              | and Digital<br>Controllers        | drivers                                | IGBTs                     | HV                                                                 | LV                                         | Diodes                                                     | SCRs                                                                    | Triacs | voltage<br>regulators | Conv.           |
| Rect. & inr<br>current lim |              | -                                 | -                                      | -                         |                                                                    | -                                          | STBR3012<br>STBR6012                                       | TN4015H-6<br>TN5015H-6<br>TM8050H-8<br>TN3050H-12Y<br>TN5050H-12Y       | -      | -                     | -               |
|                            |              |                                   |                                        |                           |                                                                    |                                            | -                                                          | -                                                                       | T1635T | -                     | -               |
| PFC Boost                  |              | STNRGPF01<br>STM32F4*<br>STM32F7* | PM8834<br>PM8841<br>PM8851             |                           | ST*N60M2<br>ST*N65M2<br>ST*N65M5                                   | -                                          | STTH*T06<br>STTH*R06<br>STTH*S12<br>STPSC*<br>(SiC Diodes) | -                                                                       | -      | -                     | -               |
| Charge<br>controller       | НВ           |                                   | L638*<br>L639*<br>L649*                | STG*V60DF ST*N60D         | <ul> <li>ST*N50DM2</li> <li>ST*N60DM2</li> <li>ST*N60M2</li> </ul> | -                                          |                                                            |                                                                         | -      | -                     | -               |
| DC-DC<br>stage             | Push<br>Pull | STM32F4*<br>STM32F7*              | PM8834<br>PM8841<br>PM8851<br>STGAP1AS |                           | -                                                                  | ST*N6F7<br>ST*N8F7<br>ST*N10F7<br>STP*N3LL | STTH*06<br>STTH*12<br>STPSC*                               | STTH*12 -                                                               |        | LDF<br>LDFM<br>LDK220 | L698*<br>ST1S14 |
|                            | NPC          |                                   | L638*                                  |                           | SCT*N120                                                           | -                                          | (SiC Diodes)                                               |                                                                         | -      | LDK320                | L7985<br>L7986  |
| DC-AC<br>stage             | FB           |                                   | L639*<br>L649*<br>STGAP1AS             | STG*H65DFB<br>STG*H120DF2 | -                                                                  | STP110N8F6<br>ST*N8F7<br>ST*N10F7          |                                                            |                                                                         |        | LDK715<br>LDL212      | L7987*          |
| Bypass                     |              | -                                 | -                                      | -                         | -                                                                  | -                                          | -                                                          | T2550-12<br>TPDV*<br>TN5050H-12WY<br>TYN6*<br>TYN8*<br>TYN10*<br>TYN12* | -      | -                     | -               |

#### Example of high-end configuration

