

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

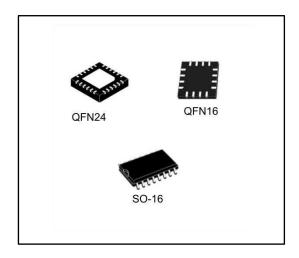
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



STUSB4710

Autonomous USB PD controller with integrated discharge path

Datasheet - production data

Features

- USB power delivery (PD) controller
- Type-C attach and cable orientation detection
- Single role: provider DFP
- Full hardware solution no software
- I²C interface (optional connection to MCU)
- Support all USB PD profiles: up to 5 power data objects (PDO)
- Configurable start-up profiles
- Integrated V_{BUS} voltage monitoring
- Internal and/or external V_{BUS} discharge path
- Short -to-V_{BUS} protections on CC pins (22 V) and V_{BUS} pins (28 V)
- Wide power supply input:
 - $V_{DD} = [4.1 \text{ V}; 22 \text{ V}]$

• Temperature range: -40 °C up to 105 °C

- Fully compatible with:
 - USB Type-C™ rev 1.2
 - USB PD rev 2.0
- Certification test ID: 1000125 (QFN24)

Applications

- AC adapters and power supplies for: computer, consumer or portable consumer applications
- Smart plugs and wall adapters
- Power hubs and docking stations
- Displays
- Any Type-C source device

Description

The STUSB4710 is a new family of USB power delivery controllers communicating over Type- C^{TM} configuration channel pins (CC) to negotiate a given amount of power to be sourced to an inquiring consumer device.

The STUSB4710 addresses provider/DFP devices such as notebooks, tablets and AC adapters. The device can handle any connections to a UFP or DRP without any MCU attachment support, from device attachment to power negotiation, including V_{BUS} discharge and protections.

Table 1: Device summary table

Order code	Description	Package	Marking
STUSB4710AQTR		QFN24 EP (4x4 mm)	
STUSB4710AQ1TR	Autonomous USB PD controller (provider)	QFN16 (3x3 mm)	4710A
STUSB4710ADTR		SO-16	

November 2017 DocID030499 Rev 4 1/34

Contents

		ption	
-	-		
2.1			
2.2			
2.3	Pin descr	iption	8
	2.3.1	CC1 / CC2	8
	2.3.2	I ² C interface pins	8
	2.3.3	VBUS_SENSE	8
	2.3.4	VBUS_EN_SRC	
	2.3.5	VDD	
	2.3.6	GND	
	2.3.7	ADDR0	_
	2.3.8	VREG2V7	
	2.3.9	VBUS_DISCH	
	2.3.10	SEL_PDO [5:2]	
Block (description	ıs	10
3.1	CC interfa	ace	10
3.2	BMC		10
3.3	Protocol I	ayer	10
3.4	Policy en	gine	10
3.5	Device po	olicy manager	11
3.6	-	wer path control	
	3.6.1	VBUS monitoring	
	3.6.2	VBUS discharge	11
	3.6.3	VBUS power path assertion	12
3.7	High volta	age protection	12
3.8	Hardware	e fault management	12
3.9		y mode detection	
	3.9.1	Audio accessory mode detection	13
	3.9.2	Debug accessory mode detection	
User-de	efined star	tup configuration	14
4.1		er overview	
4.2		oltage configuration in NVM	
4.3		urrent configuration in NVM	
4.0	1 00 - 60	arient configuration in NVIVI	13

STUS	SB4710		Contents
	4.4	Monitoring configuration in NVM	15
	4.5	Discharge configuration in NVM	15
5	I ² C inte	rface	16
	5.1	Read and write operations	16
	5.2	Timing specifications	17
6	I ² C regis	ster map	19
7	_	use cases	
	7.1	Power supply – buck topology	
	7.3	Power supply – flyback topology	
8	Electric	al characteristics	
	8.1	Absolute maximum ratings	22
	8.2	Operating conditions	
	8.3	Electrical and timing characteristics	23
9	Packag	e information	25
	9.1	QFN24 EP 4x4 mm package information	25
	9.2	QFN16 (3x3x0.55) package information	27
	9.3	SO-16 package information	29
	9.4	Thermal information	30
	9.5	Packing information	31
10	Terms a	and abbreviations	32
11	Revisio	n history	33

1 Functional description

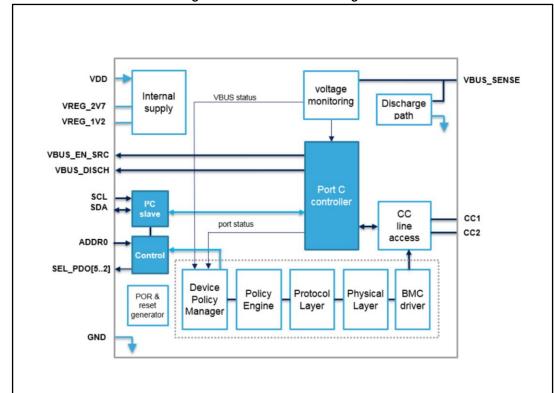
The STUSB4710 is an autonomous USB power delivery controller optimized as a provider. It offers an open-drain GPIO interface to make direct interconnection with a power regulation stage.

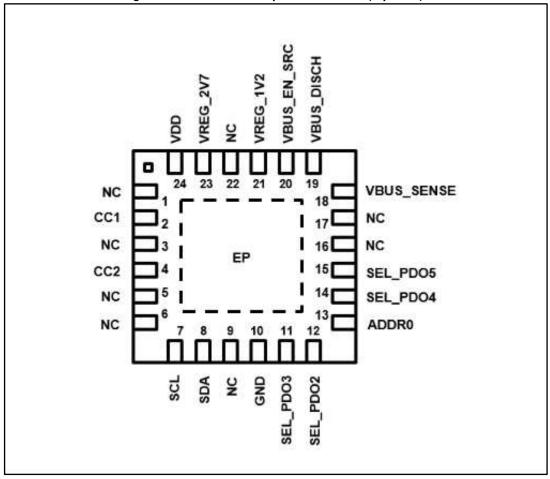
The STUSB4710 offers the benefits of a full hardware USB PD stack allowing robust and safe USB PD negotiation in line with USB PD standard. The STUSB4710 is ideal for provider applications in which digital or software intelligence is limited or missing.

The STUSB4710 main functions are:

- Detect the connection between two USB ports (attach detection)
- Establish a valid host to device connection
- Discover and configure V_{BUS}: Type-C low, medium or high current mode
- Resolve cable orientation
- Negotiate a USB power delivery contract with a PD capable device
- Configure the power source accordingly
- Monitor V_{BUS}, manage transitions, handle protections and ensure user and device safety

Additionally, the STUSB4710 offers 5 customizable power data objects (PDOs), 5 general purpose I/Os, an integrated discharge path, and is natively robust to high voltage peaks.




Figure 1: Functional block diagram

STUSB4710 Inputs/outputs

2 Inputs/outputs

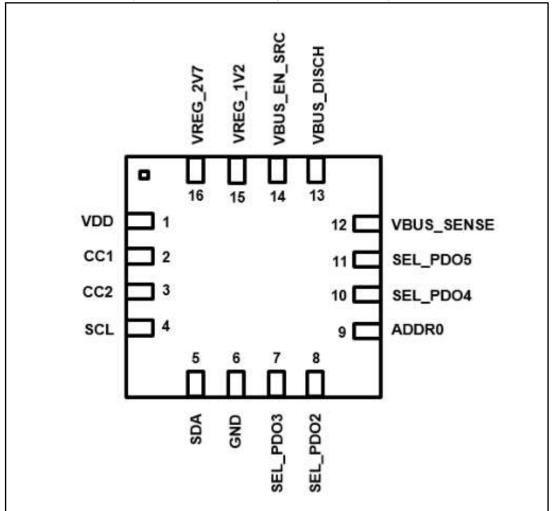

2.1 Pinout

Figure 2: STUSB4710QTR pin connections (top view)

Inputs/outputs STUSB4710

Figure 3: STUSB4710Q1TR pin connections (top view)

STUSB4710 Inputs/outputs

Figure 4: STUSB4710DTR pin connections (top view) CC2 1 16 CC1 SCL [VDD SDA 🗌 VREG_2V7 GND [VREG_1V2 SEL_PDO3 [VBUS_EN_SRC SEL_PDO2 [VBUS_DISCH ADDR0 VBUS_SENSE SEL_PDO4 [SEL_PDO5

Pin list

2.2

Table 2: Pin function list

Name	Туре	Description	Connection
CC1	20 V analog IO	Configuration channel 1	Type-C receptacle A5
CC2	20 V analog IO	Configuration channel 2	Type-C receptacle B5
SCL	DI	I ² C clock	To I ² C master – ext. pull-up
SDA	DI/OD	I ² C data input/output – active low open-drain	To I ² C master – ext. pull-up
GND	Power	Ground	
SEL_PDO3	OD	PD03 select flag	
SEL_PDO2	OD	PD02 select flag	
ADDR0	Analog	I ² C address 0 bit	
SEL_PDO4	OD	PD04 select flag	
SEL_PDO5	OD	PD05 select flag	
VBUS_SENSE	20 V AI	V _{BUS} voltage monitoring and discharge path	From V _{BUS}

Inputs/outputs STUSB4710

Name	Type Description		Connection
VBUS_DISCH	Output	External discharge control signal	
VBUS_EN_SRC	20 V OD	V _{BUS} source power path enable – active low open-drain	To switch or power system – ext. pull-up
VREG_1V2	Analog	1.2 V regulator output	1 μF typ. decoupling capacitor
VREG_2V7	Analog	2.7 V regulator output	1 μF typ. decoupling capacitor
VDD 20 V power		Main power supply (USB power line)	From V _{BUS} (system side)
EP	Exposed pad	Exposed pad is connected to ground	To ground

Table 3: Legend

Туре	Description
D	Digital
Α	Analog
0	Output pad
I	Input pad
IO	Bidirectional pad
OD	Open drain output
PD	Pull-down
PU	Pull-up
PWR	Power supply
GND	Ground

2.3 Pin description

2.3.1 CC1 / CC2

CC1 and CC2 are the configuration channel pins used for connection and attachment detection, plug orientation determination and system configuration management across USB Type-C cable. CC1/CC2 are HiZ during reset.

2.3.2 I²C interface pins

Table 4: I²C interface pin list

Name	Description		
SCL	I ² C clock – needs external pull-up		
SDA	I ² C data – needs external pull-up		

2.3.3 VBUS_SENSE

This input pin is used to sense V_{BUS} presence, monitor V_{BUS} voltage and discharge V_{BUS} on USB Type-C receptacle side.

STUSB4710 Inputs/outputs

2.3.4 VBUS EN SRC

In source power role, this pin allows the outgoing V_{BUS} power to be enabled when the connection to a sink is established and V_{BUS} is in the valid operating range. The open-drain output allows a PMOS transistor to be driven directly. The logic value of the pin is also advertised in a dedicated I²C register bit.

2.3.5 VDD

 V_{DD} is the main power supply for applications powered by V_{BUS} .

This pin can be used to sense the voltage level of the main power supply providing V_{BUS} . It allows UVLO and OVLO voltage thresholds to be considered independently on VDD pin as additional conditions to enable the V_{BUS} power path through VBUS EN SRC pin.

2.3.6 GND

Ground.

2.3.7 ADDR0

At start-up, this pin is latched to set I2C device address 0 bit.

2.3.8 VREG2V7

This pin is used for external decoupling of 2.7 V internal regulator only.

Recommended decoupling capacitor: 1 µF typ. (0.5 µF min.; 10 µF max.).

This pin must not be used to supply any external component.

2.3.9 VBUS DISCH

Control signal for external VBUS_DISCH path.

2.3.10 SEL PDO [5:2]

These 4 output signals are asserted (active low) respectively when PDO2, PDO3, PDO4 and PDO5 are selected by the attached sink. These signals are used to pilot the power management unit.

Block descriptions STUSB4710

3 Block descriptions

3.1 CC interface

The STUSB4710 controls the connection to the configuration channel (CC) pins, CC1 and CC2, through two main blocks, the CC line interface block and the CC control logic block.

The CC lines interface block is used to:

- Configure the termination mode on the CC pins relative to the power mode supported, i.e. pull-up for source power role
- Monitor the CC pin voltage values relative to the attachment detection thresholds
- Protect the CC pins against over voltage

The CC control logic block is used to:

- Execute the Type-C FSM relative to the Type-C power mode supported
- Determine the electrical state for each CC pins relative to the detected thresholds
- Evaluate the conditions relative to the CC pin states and V_{BUS} voltage value to transition from one state to another in the Type-C FSM
- Detect and establish a valid source-to-sink connection
- Determine the attached mode: source, accessory
- Determine cable orientation to allow external routing of the USB super speed data
- Manage V_{BUS} power capability: USB default, Type-C medium or Type-C high current mode
- Handle hardware faults

The CC control logic block implements the Type-C FSM's corresponding to source power role with accessory support.

3.2 BMC

This block is the physical link between USB PD protocol layer and CC pin. In TX mode, it converts the data into biphase mark coding (BMC), and drives the CC line to correct voltages. In RX mode, it recovers BMC data from the CC line, and converts to baseband signaling for the protocol layer.

3.3 Protocol layer

The protocol layer has the responsibility to manage the messages from/to the physical layer. It automatically manages the protocol receive timeouts, the message counter, the retry counter and the GoodCRC messages.

It communicates with the internal policy engine.

3.4 Policy engine

The policy engine implements the power negotiation with the connected device according to its source role, it implements the state machine that controls protocol layer forming and scheduling the messages.

The policy engine uses the protocol layer to send/receive messages.

The policy engine interprets the device policy manager's input in order to implement policy for port and directs the protocol layer to send appropriate messages.

STUSB4710 Block descriptions

3.5 Device policy manager

The device policy manager manages the power resources.

3.6 VBUS power path control

3.6.1 VBUS monitoring

The V_{BUS} monitoring block supervises (from the VBUS_SENSE input pin) the V_{BUS} voltage on the USB Type-C receptacle side.

This block is used to check that V_{BUS} is within a valid voltage range:

- To establish a valid source-to-sink connection according to USB Type-C standard specification
- To enable safely the V_{BUS} power path through VBUS EN SRC pin

It allows detection of unexpected V_{BUS} voltage conditions such as undervoltage or overvoltage relative to the valid V_{BUS} voltage range. When such conditions occur, the STUSB4710 reacts as follows:

- At attachment, it prevents the source-to-sink connection and the V_{BUS} power path assertion
- After attachment, it deactivates the source-to-sink connection and disables the V_{BUS} power path. The device goes into error recovery state.

The V_{BUS} voltage value is automatically adjusted at attachment and at each PDO transition. The monitoring is then disabled during T_PDO_transition (default 280 ms changed through NVM programming). Additionally, if a transition occurs to a lower voltage, the discharge path is activated during this time.

The valid V_{BUS} voltage range is defined from the V_{BUS} nominal voltage by a high threshold voltage and a low threshold voltage whose minimal values are respectively $V_{BUS}+5\%$ and $V_{BUS}-5\%$. The nominal threshold limits can be shifted by a fraction of V_{BUS} from +1% to +15% for the high threshold voltage and from -1% to -15% for the low threshold voltage. This means the threshold limits can vary from $V_{BUS}+5\%$ to $V_{BUS}+20\%$ for the high limit and from $V_{BUS}-5\%$ to $V_{BUS}-20\%$ for the low limit.

The threshold limits are preset by default in the NVM with different shift coefficients (see *Section 8.3: "Electrical and timing characteristics"*). The threshold limits can be changed independently through NVM programming (see *Section 8.3: "Electrical and timing characteristics"*) and also by software during attachment through the I²C interface (see *Section 6: "I²C register map"*).

3.6.2 VBUS discharge

The monitoring block handles also the internal V_{BUS} discharge path connected to the VBUS_SENSE input pin. The discharge path is activated at detachment, or when the device goes into the error recovery state (see *Section 3.8: "Hardware fault management"*).

The V_{BUS} discharge path is enabled by default in the NVM and can be disabled through NVM programming only (see *Section 4: "User-defined startup configuration"*). Discharge time duration (T_PDO_transition and T_Transition to 0 V) are also preset by default in the NVM (see *Section 8.3: "Electrical and timing characteristics"*). The discharge time duration can be changed through NVM programming (see *Section 4: "User-defined startup configuration"*) and also by software through the I²C interface (see *Section 6: "I²C register map"*).

Block descriptions STUSB4710

3.6.3 VBUS power path assertion

The STUSB4710 can control the assertion of the V_{BUS} power path on USB Type-C port, directly or indirectly, through VBUS_EN_SRC pin.

The following table summarizes the configurations and the conditions that determine the logic value of VBUS_EN_SRC pin during system operation.

Table 5: Conditions for VBUS power path assertion

Pin	Electrical Operation conditions			Comment		
PIII	value	Attached state	V _{DD} monitoring	V _{BUS} monitoring	Comment	
		Attached.SRC	V/DD 11VI O #	V _{BUS} within valid		
	0	UnorientedDebug Accessory.SRC	VDD > UVLO if VDD_UVLO enabled and/or VDD < OVLO if VDD_OVLO enabled	VDD_UVLO	voltage range if VBUS _VALID_RANGE	The signal is asserted only if all
VBUS_EN_SRC		OrientedDebug Accessory.SRC		enabled or V _{BUS} > UVLO if VBUS _VALID_RANGE disabled	the valid operation conditions are met.	
HiZ		Any other state	VDD < UVLO if VDD_UVLO enabled and/or VDD > OVLO if VDD_OVLO enabled	V _{BUS} is out of valid voltage range if VBUS _VALID_RANGE enabled or V _{BUS} < UVLO if VBUS _VALID_RANGE disabled	The signal is de- asserted when at least one non- valid operation condition is met.	

Activation of the UVLO and OVLO threshold detections can be done through NVM programming (see *Section 4: "User-defined startup configuration"*) and also by software through the I²C interface (see *Section 6: "I²C register map"*). When the UVLO and/or OVLO threshold detection is activated, the VBUS_EN_SRC pin is asserted only if the device is attached and the valid threshold conditions on V_{DD} are met. Once the VBUS_EN_SRC pin is asserted, the V_{BUS} monitoring is done on VBUS_SENSE pin instead of the V_{DD} pin.

3.7 High voltage protection

The STUSB4710 can be safely used in systems or connected to systems that handle high voltage on the V_{BUS} power path. The device integrates an internal circuitry on the CC pins that tolerates high voltage and ensures a protection up to 22 V in case of unexpected short circuit with V_{BUS} or in case of connection to a device supplying high voltage on V_{BUS} .

3.8 Hardware fault management

The STUSB4710 handles hardware fault conditions related to the device itself and the V_{BUS} power path during system operation.

When such conditions occur, the circuit goes into a transient error recovery state named ErrorRecovery in the Type-C FSM. When entering in this state, the device de-asserts the VBUS power path by disabling the VBUS_EN_SRC pin, and it removes the terminations

STUSB4710 Block descriptions

from the CC pins during several tens of milliseconds. Then, it transitions to the unattached source state.

The STUSB4710 goes into error recovery state when at least one condition listed below is met:

- If an overtemperature is detected, the "THERMAL_FAULT" flag is asserted.
- If an internal pull-up voltage on CC pins is below UVLO threshold, the "VPU_VALID" flag is asserted.
- If an overvoltage is detected on the CC pins, the "VPU_OVP_FAULT" flag is asserted.
- If the V_{BUS} voltage is out of the valid voltage range during attachment, the "VBUS VALID" flag is asserted.
- If an undervoltage is detected on the V_{DD} pin during attachment when UVLO detection is enabled, the "VDD_UVLO_DISABLE" flag is asserted.
- If an overvoltage is detected on the V_{DD} pin during attachment when OVLO detection is enabled, the "VDD OVLO DISABLE" flag is asserted.

The I²C register bits mentioned above in quotes give either the state of the hardware fault when it occurs or the setting condition to detect the hardware fault.

3.9 Accessory mode detection

The STUSB4710 supports the detection of audio accessory mode and debug accessory mode as defined in the USB Type-C standard specification source power role with accessory support.

3.9.1 Audio accessory mode detection

The STUSB4710 detects an audio accessory device when both the CC1 and CC2 pins are pulled down to ground by a Ra resistor from the connected device. The audio accessory detection is advertised through the CC_ATTACHED_MODE bits of the I²C register CC CONNECTION STATUS.

3.9.2 Debug accessory mode detection

The STUSB4710 detects a connection to a debug and test system (DTS) when it operates either in sink power role or source power role. The debug accessory detection is advertised by the DEBUG1 and DEBUG2 pins as well as through the CC_ATTACHED_MODE bits of the I²C register CC_CONNECTION_STATUS.

In source power role, a debug accessory device is detected when both the CC1 and CC2 pins are pulled down to ground by a Rd resistor from the connected device. The orientation detection is performed in two steps as described in the table below. The DEBUG2 pin is asserted to advertise the DTS detection and the A_B_SIDE pin indicates the orientation of the connection. The orientation detection is advertised through the TYPEC_FSM_STATE bits of the I²C register CC_OPERATION_STATUS.

4 User-defined startup configuration

4.1 Parameter overview

The STUSB4710 has a set of user-defined parameters that can be customized by NVM reprogramming and/or by software through I²C interface. It allows changing the preset configuration of USB Type-C and PD interface and to define a new configuration to meet specific customer requirements addressing various applications, use cases or specific implementations.

The NVM re-programming overrides the initial default setting to define a new default setting that is used at power-up or after a reset. The default value is copied at power-up, or after a reset, from the embedded NVM into dedicated I²C register bits. The NVM re-programming is possible few times with a customer password.

Feature Parameter		Value	Default
DDO1	Voltage	5 V	5 V
PDO1	Current	Configurable – defined by PDO1_I [3:0]	3 A
DDOO	Voltage	Configurable – defined by PDO2_V [1:0]	9 V
PDO2	Current	Configurable – defined by PDO2_I [3:0]	3 A
PDO3	Voltage	Configurable – defined by PDO3_V [1:0]	12 V
PD03	Current	Configurable – defined by PDO3_I [3:0]	3 A
DDO4	Voltage	Configurable – defined by PDO4_V [1:0]	15 V
PDO4	Current	Configurable – defined by PDO4_I [3:0]	3 A
DDOF	Voltage	Configurable – defined by PDO5_V [1:0]	20 V
PDO5	Current	Configurable – defined by PDO5_I [3:0]	2.25 A

Table 6: PDO configurations in NVM

When a default value is changed during system boot by software, the new settings apply as long as the STUSB4710is being run and until it is changed again. But after power-off and power-up, or after a hardware reset, the STUSB4710 takes back default values defined in the NVM.

4.2 PDO – voltage configuration in NVM

PDO2_V [1:0], PDO3_V [1:0], PDO4_V [1:0] and PDO5_V [1:0] can be configured with the following values:

 Value
 Configuration

 2b00
 9 V

 2b01
 15 V

 2b10
 PDO_FLEX_V1

 2b11
 PDO FLEX V2

Table 7: PDO NVM voltage configuration

PDO_FLEX_V1 and PDO_FLEX_V2 are defined in a specific 10-bit register, value is being expressed in 50 mV units.

For instance:

- PDO_FLEX_V1 = 10b0100100010 → 14.5 V
- PDO_FLEX_V2 = 10b0110000110 → 19.5 V

4.3 PDO – current configuration in NVM

PDO1_I [3:0], PDO2_I [3:0], PDO3_I [3:0], PDO4_I [3:0] and PDO5_I [3:0] can be configured with the following fixed values:

Table 8: PDO NVM current configuration

Value	Configuration
4b0000	PDO_FLEX_I
4b0001	1.50 A
4b0010	1.75 A
4b0011	2.00 A
4b0100	2.25 A
4b0101	2.50 A
4b0110	2.75 A
4b0111	3.00 A
4b1000	3.25 A
4b1001	3.50 A
4b1010	3.75 A
4b1011	4.00 A
4b1100	4.25 A
4b1101	4.50 A
4b1110	4.75 A
4b1111	5.00 A

PDO_FLEX_I is defined in a specific 10-bit register, value is being expressed in 10 mA units. For instance:

• PDO FLEX I = 10b0011100001 → 2.25 A

4.4 Monitoring configuration in NVM

- T_PDO_Transition can be configured from 20 to 300 ms by increments of 20 ms (0 is not recommended). Default value is 240 ms.
- T_Transition_to_0V can be configured from 84 to 1260 ms by increments of 84 ms (0 is not recommended). Default value is 168 ms.
- Vshift_High can be configured from (5 to 20%). Default value ranges from 8% to 12%.
- Vshift Low can be configured from (5 to 20%). Default value is 10% for all PDO.

4.5 Discharge configuration in NVM

Both internal and external discharge paths are enabled by default. VBUS_DISCH control pin is configured to drive a PMOS by default (active low).

I²C interface STUSB4710

5 I²C interface

5.1 Read and write operations

The I²C interface is used to configure, control and read the status of the device. It is compatible with the Philips I²C Bus® (version 2.1). The I²C is a slave serial interface based on two signals:

- SCL serial clock line: input clock used to shift data
- SDA serial data line: input/output bidirectional data transfers

A filter rejects the potential spikes on the bus data line to preserve data integrity.

The bidirectional data line support transfers up to 400 Kbit/s (fast mode). The data are shifted to and from the chip on the SDA line, MSB first.

The first bit must be high (START) followed by the 7-bit device address and the read/write control bit.

Two 7-bit device addresses are available for the STUSB4710 thanks to external programming of DevADDR0, through ADDR0, pin setting. It allows two STUSB4710 devices to be connected on the same I²C bus.

ADDR is not available for all configurations.

The device address format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DevADDR6	DevADDR5	DevADDR4	DevADDR3	DevADDR2	DevADDR1	DevADDR0	R/W
0	1	0	1	0	0	ADDR0	0/1

The register address format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
RegADDR7	RegADDR6	RegADDR5	RegADDR4	RegADDR3	RegADDR2	RegADDR1	RegADDR0

The register data format:

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0

STUSB4710 I²C interface

Figure 5: Read operation

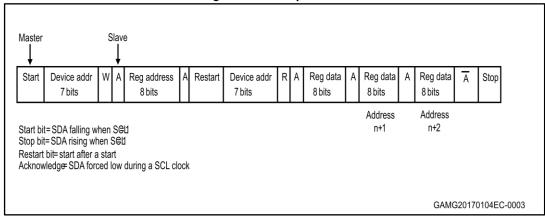
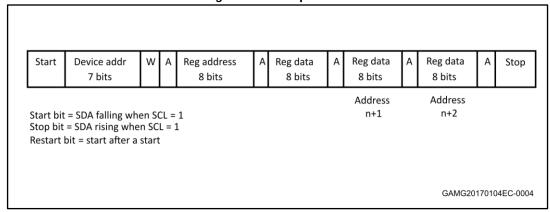



Figure 6: Write operation

5.2 Timing specifications

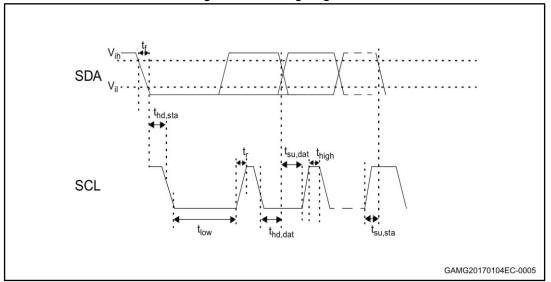

The device uses a standard slave I²C channel at speed up to 400 kHz.

Table 9: I²C timing parameters - VDD = 5 V

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{scl}	SCL clock frequency	0	-	400	kHz
thd,sta	hd,sta Hold time (repeated) START condition		-	1	μs
t _{low}	LOW period of the SCL clock	1.3	-	1	μs
thigh	thigh HIGH period of the SCL clock		-	-	μs
t _{su,dat}	Setup time for repeated START condition	0.6	-	1	μs
t _{hd,dat}	Data hold time	0.04	-	0.9	μs
t _{su,dat}	Data setup time	100	-	-	μs
t _r	Rise time of both SDA and SCL signals	20 + 0.1 C _b	-	300	ns
t _f	Fall time of both SDA and SCL signals	20 + 0.1 C _b	-	300	ns
t _{su,sto}	Setup time for STOP condition	0.6	-	1	μs
t _{buf}	Bus free time between a STOP and START condition	1.3	-	-	μs
Cb	Capacitive load for each bus line	-	-	400	pF

I²C interface STUSB4710

Figure 7: I²C timing diagram

STUSB4710 I²C register map

6 I²C register map

Table 10: STUSB4710 register map overview

Address	Register name	Access	Description
00h to 0Ah	Reserved	RO	Do not use
0Bh	ALERT_STATUS	RC	Alert register linked to transition registers
0Ch	ALERT_STATUS_MASK_CTRL	R/W	Interrupt mask on ALERT_STATUS register
0Dh	CC_CONNECTION_STATUS_TR ANS	RC	Alerts on transition in CC_CONNECTION_STATUS register
0Eh	CC_CONNECTION_STATUS	RO	CC connection status
0Fh	MONITORING_STATUS_TRANS	RC	Alerts on transition in MONITORING_STATUS register
10h	MONITORING_STATUS	RO	Gives status on V _{BUS} voltage monitoring
11h	Reserved	RO	Do not use
12h	HW_FAULT_STATUS_TRANS	RC	Alerts on transition in HW_FAULT_STATUS register
13h	HW_FAULT_STATUS	RO	Hardware faults status
14h to 17h	Reserved	RO	Do not use
18h	CC_CAPABILITY_CTRL	R/W	Allows the CC capabilities to be changed
19h to 22h	Reserved	RO	Do not use
23h	RESET_CTRL	R/W	Controls the device reset by software
24h	Reserved	RO	Do not use
25h	VBUS_DISCHARGE_TIME_CTRL	R/W	Parameters defining V _{BUS} discharge time
26h	VBUS_DISCHARGE_CTRL	R/W	Controls the V _{BUS} discharge path
27h	VBUS_ENABLE_STATUS	RO	V _{BUS} power path activation status
2Eh	VBUS_MONITORING_CTRL	R/W	Allows the monitoring conditions of V _{BUS} voltage to be changed
19h to 1Eh	Reserved	RO	Do not use
71h	SRC_PDO1	R/W	PDO1 capabilities configuration
75h	SRC_PDO2	R/W	PDO2 capabilities configuration
79h	SRC_PDO3	R/W	PDO3 capabilities configuration
7Dh	SRC_PDO4	R/W	PDO4 capabilities configuration
81h	SRC_PDO5	R/W	PDO5 capabilities configuration
91h	SRC_RDO	RO	PDO request status

Table 11: Register access legend

		•••	and it it it agrees access to gette
Access code Expanded name		Expanded name	Description
	RO	Read only	Register can be read only
	R/W	Read / write	Register can be read or written
	RC	Read and clear	Register can be read and is cleared after read

Typical use cases STUSB4710

7 Typical use cases

7.1 Power supply – buck topology

Power Control

Power

Figure 8: Power supply - buck topology

The STUSB4710 offers the possibility to have up to 5 PDOs using (GPIO0 to GPIO3).

For example PDO1:5V 3A (no GPIO grounded), PDO2:9V 3A (GPIO0 to GND), PDO3:12V 3A (GPIO1 to GND), PDO4:15 V (GPIO2 to GND), PDO5: 20 V (GPIO3 to GND).

PDO	Vout	Computation	Resistor value (Ω)					
-	-	R1	200 k					
5	20	$R_2 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22}$	13 k					
4	15	$R_3 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_2$	4k7					
3	12	$R_4 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_2 - R_3$	4k87					
2	9	$R_5 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_2 - R_3 - R_4$	8k66					
1	5	$R_6 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_2 - R_3 - R_4 - R_5$	33 k					

Table 12: Resistor value

STUSB4710 Typical use cases

7.3 Power supply – flyback topology

The STUSB4710 offers the possibility to have up to 5 PDOs using GPIO0 to GPIO3.

For example PDO1 ($5\ V; 3\ A$) (no Sel_PDO grounded), PDO2 (9 $V; 3\ A$) (GPIO0 to GND), PDO3 (15 $V; 3\ A$) (GPIO1 to GND).

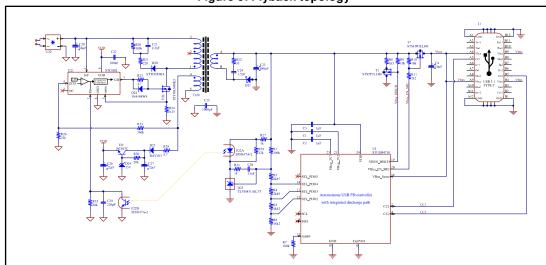


Figure 9: Flyback topology

Table 13: Resistor value

PDO	Vout	Computation	Resistor value (Ω)
-	-	R1	100 k
4	15	$R_3 = \frac{R_1 \cdot 1.24}{V_{OUT} - 1.24}$	8k87
3	12	$R_4 = \frac{R_1 \cdot 1.24}{V_{OUT} - 1.24} - R_3$	2k49
2	9	$R_5 = \frac{R_1 \cdot 1.24}{V_{OUT} - 1.24} - R_3 - R_4$	4k42
1	5	$R_6 = \frac{R_1 \cdot 1.22}{V_{OUT} - 1.22} - R_2 - R_3 - R_4 - R_5$	16k2

Electrical characteristics STUSB4710

8 Electrical characteristics

8.1 Absolute maximum ratings

All voltages are referenced to GND.

Table 14: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	28	V
V _{CC1} , V _{CC2}	High voltage on CC pins	22	٧
Vvbus_en_src Vvbus_sense Vvbus_disch	High voltage on V _{BUS} pins	28	V
VSCL, VSDA	Operating voltage on I/O pins	-0.3 to 6	V
T _{STG}	Storage temperature	-55 to 150	°C
TJ	Maximum junction temperature	145	°C
ESD	НВМ	4	kV
EOD	CDM	1.5	r.v

8.2 Operating conditions

Table 15: Operating conditions

Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	4.1 to 22	V
V _{CC1} , V _{CC2}	Vcc1, Vcc2 CC pins (1)		V
Vvbus_en_src Vvbus_sense Vvbus_disch	High voltage pins	0 to 22	V
V _{SCL} , V _{SDA}	Operating voltage on I/O pins	0 to 4.5	V
TA	Operating temperature	-40 to 105	°C

Notes:

⁽¹⁾Transient voltage on CC1 and CC2 pins are allowed to go down to -0.3 during BMC communication from connected devices.

8.3 Electrical and timing characteristics

Unless otherwise specified: $V_{DD} = 5 \text{ V}$, $T_A = +25 \,^{\circ}\text{C}$, all voltages are referenced to GND.

Table 16: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Current	Device idle as SOURCE (not c	onnected, no co			
$I_{\text{DD(SRC)}}$	consumption	V _{DD} @ 5.0 V	_	188	_	μА
	Standby	Device standby (not connected	l, low power)			
I _{STDBY}	current consumption	V _{DD} @ 5.0 V	_	53	-	μΑ
CC1 and 0	CC2 pins					
I _{P-USB}		CC pin voltage	-20%	80	+20%	μΑ
I _{P-1.5}	CC current sources	$V_{CC} = -0.3 \text{ to } 2.6 \text{ V}$	-8%	180	+8%	μΑ
I _{P-3.0}	Sources	-40° < T _A < +105°	-8%	330	+8%	μΑ
Vcco	CC open pin voltage	CC unconnected, V _{DD} =3.0 to 5.5 V	2.75	_	-	V
R _d	CC pull-down resistors	-40° < T _A < +105°	-10%	5.1	+10%	kΩ
		External I _P =180 μA applied into CC	_	1	1.2	٧
V _{CCDB-1.5}	dead battery	External I _P =330 μA applied into CC (V _{DD} = 0, dead battery function enabled)	-	-	2	V
RINCC	CC input impedance	Pull-up and pull-down resistors off	200	_	_	kΩ
V TH0.2	Detection threshold 1	Max. R _a detection by DFP at I _P = I _{P-USB} , min. I _{P_USB} detection by UFP on R _d , min. CC voltage for connected UFP	0.15	0.2	0.25	V
V _{TH0.4}	Detection threshold 2		0.35	0.4	0.45	٧
V _{TH0.66}	Detection threshold 3	Min I _{P_1.5} detection by UFP on R _d	0.61	0.66	0.7	٧
V _{TH0.8}	Detection threshold 4	Max. R _a detection by DFP at I _P = I _{P-3.0}	0.75	0.8	0.85	٧
V _{TH1.23}	Detection threshold 5	Min. I _{P_3.0} detection by UFP on R _d	1.16	1.23	1.31	٧
V _{TH1.6}	Detection threshold 6	Max R _d detection by DFP at $I_P = I_{P-USB}$ and $I_P = I_{P-1.5}$	1.5	1.6	1.65	٧
V _{TH2.6}	Detection threshold 7	Max. R _d detection by DFP at I _{P-3.0} , max. CC voltage for connected UFP	2.45	2.6	2.75	V

Electrical characteristics

STUSB4710

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{BUS} mon	itoring and driving			7.		
V _{THUSB}	V _{BUS} presence threshold		3.8	3.9	4	٧
	V _{BUS} safe 0 V threshold	Programmable threshold	0.5	0.6	0.7	V
V_{THOV}		(from 0.6 to 1.8 V)	0.8	0.9	1	
VIHUV	(vSafe0V)	Default V _{THOV} = 0.6 V	1.1	1.2	1.3	'
			1.7	1.8	1.9	
Rdisusb	V _{BUS} discharge resistor		600	700	800	Ω
T _{DISUSB}	V _{BUS} discharge time to 0 V	Default T _{DISUSB} = 840 ms. The coefficient T _{DISPARAM} is programmable by NVM	70 *T _{DISPA} RAM	84 *T _{DISPA} RAM	100 *T _{DISPA} RAM	ms
	.,	Default T _{DISUSB} = 200 ms		2.4		
T _{DISUSB}	V _{BUS} discharge time to PDO	The coefficient T _{DISPARAM} is programmable by NVM	20 *T _{DISPA} RAM	24 *T _{DISPA} RAM	28 *T _{DISPA} RAM	ms
		V _{BUS} = nominal target value Default V _{MONUSBH} = V _{BUS}	-	V _{BUS} +10%	_	V
VMONUSBH	ONUSBH VBUS monitoring high voltage threshold	+10% The threshold limit is programmable by NVM from V _{BUS} +5% to V _{BUS} +20%				
Vmonusbl	V _{BUS} monitoring low voltage threshold	V _{BUS} = nominal target value Default V _{MONUSBL} = V _{BUS} - 10% The threshold limit is programmable by NVM from V _{BUS} -20% to V _{BUS} - 5%	-	V _{BUS} -10%	-	V
Digital inp	out/output (SCL, SD	A)				
V _{IH}	High level input voltage		1.2	-	_	٧
V _{IL}	Low level input voltage		-	-	0.35	٧
V _{OL}	Low level output voltage	loh = 3 mA	_	_	0.4	٧
20 V open	-drain outputs (VBL	JS_EN_SRC)				
V _{OL}	Low level output voltage	loh = 3 mA	_	_	0.4	٧

STUSB4710 Package information

9 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

9.1 QFN24 EP 4x4 mm package information

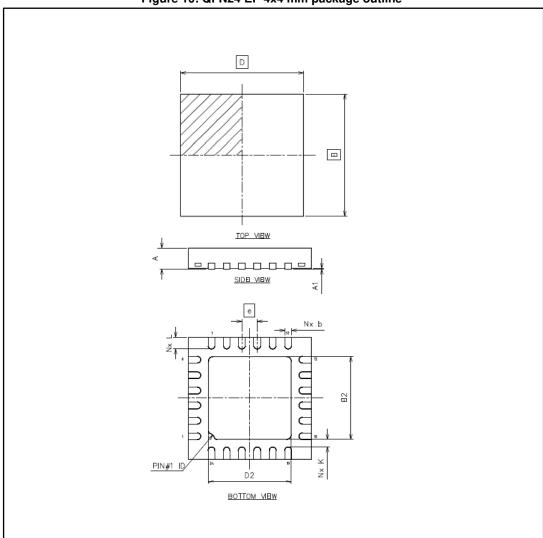


Figure 10: QFN24 EP 4x4 mm package outline