imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STW14NM50

N-CHANNEL 550V @ Tjmax - 0.32Ω - 14A TO-247

MDmesh[™] MOSFET

Table 1: General Features

ТҮРЕ	V_{DSS} (@Tjmax)	R _{DS(on)}	ID
STW14NM50	550 V	< 0.35 Ω	14 A

- TYPICAL $R_{DS}(on) = 0.32 \Omega$
- HIGH dv/dt AND AVALANCHE CAPABILITIES
- 100% AVALANCHE RATED
- LOW INPUT CAPACITANCE AND GATE CHARGE
- LOW GATE INPUT RESISTANCE
- TIGHT PROCESS CONTROL AND HIGH MANUFACTORING YIELDS

DESCRIPTION

The MDmesh[™] is a new revolutionary MOSFET technology that associates the Multiple Drain process with the Company's PowerMESH[™] horizontal layout. The resulting product has enoutstanding low on-resistance, impressively high dv/dt and excellent avalanche characteristics. The adoption of the Company's proprierations in technique yields overall dynamic perfermance that is significantly better than that of cimilar completition's products.

APPLICATIONS

The MDmesh™ fam ly is vely suitable for increase the power density of high vo tage converters allowing system miniaturization and higher efficiencies.

Table 2: Grder Co

Table 2. Graef Codes			
SALES TYPE	MARKING	PACKAGE	PACKAGING
STW14NM50	W14NM50	TO-247	TUBE

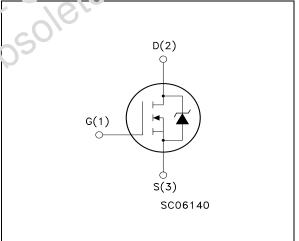



Figure 2: Internel Schematic Diagram

Table 3: Absolute Maximum ratings

Gate- source Voltage		
Cale- Source Vollage	±30	V
Drain Current (continuous) at T _C = 25°C	14	А
Drain Current (continuous) at T _C = 100°C	8.8	А
Drain Current (pulsed)	56	А
Total Dissipation at $T_C = 25^{\circ}C$	175	W
Derating Factor	1.28	W/°C
Peak Diode Recovery voltage slope	6	V/ns
Storage Temperature	-65 to 150	°C
Max. Operating Junction Temperature	150	°(;
ited by safe operating area / maximum temperature allowed $t \le 100A/\mu s, V_{DD} \le V_{(BR)DSS}, T_j \le T_{JMAX}.$		9NCL
t	Drain Current (continuous) at T _C = 100°C Drain Current (pulsed) Total Dissipation at T _C = 25°C Derating Factor Peak Diode Recovery voltage slope Storage Temperature Max. Operating Junction Temperature ited by safe operating area maximum temperature allowed	$\begin{array}{l lllllllllllllllllllllllllllllllllll$

Table 4: Thermal Data

Rthj-ca	ise	Thermal Resistance Junction-case Max	0.715	°C/W
Rthj-a	nb	Thermal Resistance Junction-ambient Max	30	°C/W
Τ _Ι		Maximum Lead Temperature For Soldering Purpose	300	°C

Table 5: Avalanche Characteristics

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	12	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}, I_D = I_{Ai}, V_{DD} = 50 \text{ V}$)	400	mJ

ELECTRICAL CHARACTERISTIC: (TCASE = 25°C UNLESS OTHERWISE SPECIFIED) Table 6: On /Off 15

Symbol	I Parameter Test Conditions M		Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain si uire Breakdown Valtuga	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	500			V
IDSS	ວເວ Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125°C			1 10	μΑ μΑ
IGeg	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30 V			± 100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
RDS(on	Static Drain-source On Resistance	V _{GS} = 10 V, I _D = 6 A		0.32	0.35	Ω

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance			5.2		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V_{DS} = 25 V, f = 1 MHz, V_{GS} = 0		1000 180 25		pF pF pF
C _{OSS eq} (3).	Equivalent Output Capacitance	$V_{GS} = 0 V, V_{DS} = 0 to 400 V$		90		pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		1.6		Ω
t _{d(on)} t _r t _{d(off)} t _f	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time			20 10 19 8	000	ns ns ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400 \text{ V}, I_D = 12 \text{ A}, V_{GS} = 10 \text{ V}$ (see Figure 18)	X	28 8 15	38	nC nC nC

Table 8: Source Drain Diode

Symbol	Parameter	Test Condi ions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)	10	6		14 56	A A
V _{SD} (1)	Forward On Voltage	ISD = 12 P, VGS = 0			1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	' _{SD} = 1≥ A, di/dt = 100 A/μs V _{DD} = 100V (see Figure 16)		270 2.23 16.5		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse Recover / Time Reverse Recovery Charge Reverse Fielovery Current	$I_{SD} = 12 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100\text{V}, \text{ T}_{j} = 150^{\circ}\text{C}$ (see Figure 16)		340 3 18		ns μC Α

Josofiled 3

(1) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
(2) Pulse width limited by safe operating area.
(3) C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Figure 3: Safe Operating Area

HV21150 $I_D(A)$ 10² 10µs 10¹ 100µs 1ms 10ms 10[°] -----Tj=150°C Tc=25°C D.C. OPERATION Single pulse 10 10^{1²} 1° 103 V_{DS}(V) 10^{-1} 10²

Figure 4: Output Characteristics

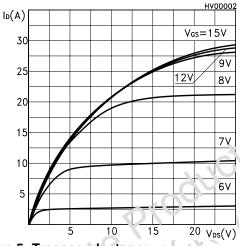
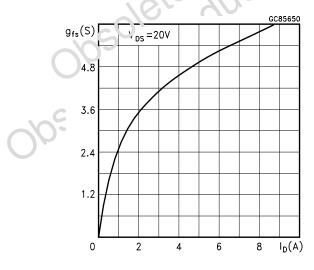



Figure 5: Transcor. Instance

Figure 6: Thermal Impedance

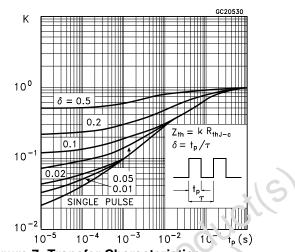


Figure 7: Transfer Characteristics

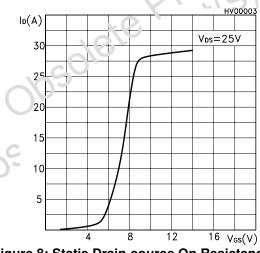
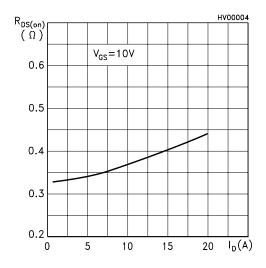



Figure 8: Static Drain-source On Resistance

Figure 9: Gate Charge vs Gate-source Voltage

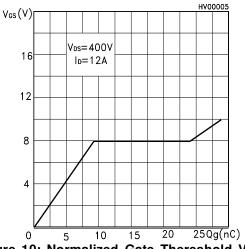


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

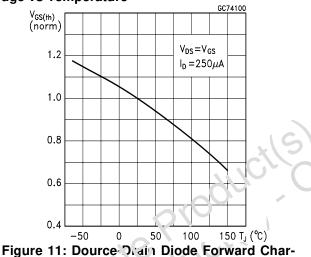
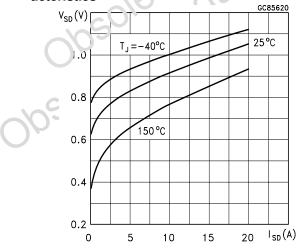



Figure 11: Dource D. ain acteristics

Figure 12: Capacitance Variations

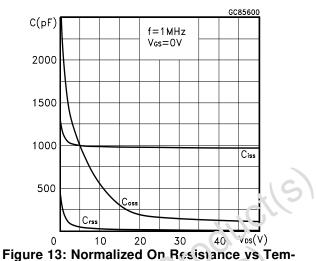
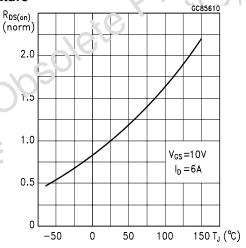



Figure 13: Normalized On Resistance vs Temperature

Figure 14: Unclamped Inductive Load Test Circuit

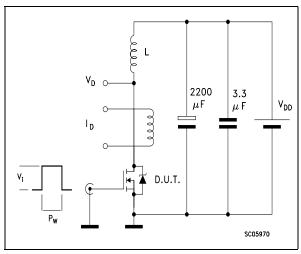


Figure 15: Switching Times Test Circuit For Resistive Load

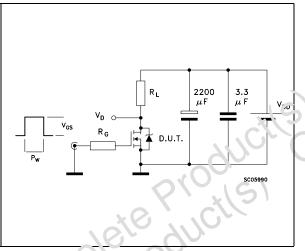
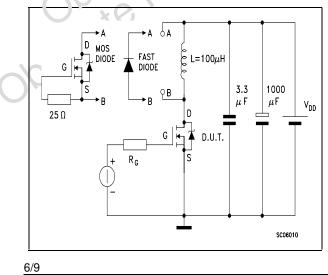



Figure 16. Sest Circuit For Inductive Load Switching and Diode Recovery Times

Figure 17: Unclamped Inductive Wafeform

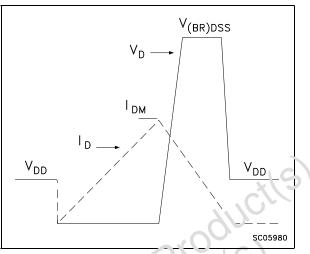
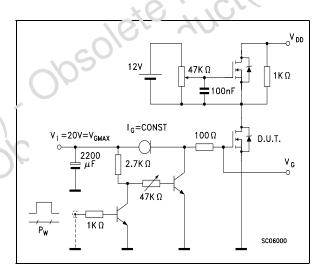
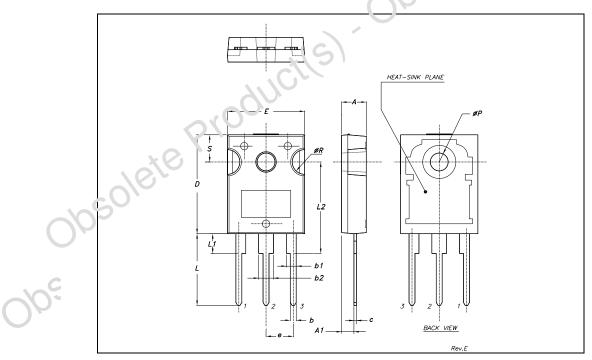




Figure 18: Gate Charge Test Circuit

DIM.		mm.			inch	
	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А	4.85		5.15	0.19		0.20
A1	2.20		2.60	0.086		0.102
b	1.0		1.40	0.039		0.055
b1	2.0		2.40	0.079		0.094
b2	3.0		3.40	0.118		0.134
С	0.40		0.80	0.015		0.03
D	19.85		20.15	0.781		0.793
E	15.45		15.75	0.608		0.620
е		5.45			0.214	201
L	14.20		14.80	0.560		0.582
L1	3.70		4.30	0.14	× C.	0.17
L2		18.50			0722	
øР	3.55		3.65	0.140		0.143
øR	4.50		5.50	0.177		0.216
S		5.50			0.216	

Table 9: Revision History

Date	Revision	Description of Changes	
05-July-2004	5	The document change from "PRELIMINARY" to "COMPLETE".	
		New Stylesheet.	

Obsolete Product(s)-Obsolete Product(s) Obsolete Product(s)-Obsolete Product(s) Obsolete Product(s)-Obsolete Product(s)

bsolete Product(s). Obsolete Product(s) Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.