imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

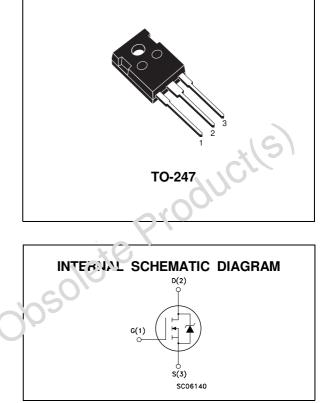
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STW20NB50

V _{DSS}	R _{DS(on)}	I _D
500 V	< 0.25 Ω	20 A
		,

- TYPICAL $R_{DS(on)} = 0.22 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- ±30V GATE TO SOURCE VOLTAGE RATING
- 100% AVALANCHE TESTED
- REPETITIVE AVALANCHE DATA AT 100°C
- VERY LOW INTRINSIC CAPACITANCES
- GATE CHARGE MINIMIZED

DESCRIPTION


Using the latest high voltage technology, STMicroelectronics has designed an advanced family of power Mosfets with outstanding performances. The new patent pending strip layout coupled with the Company's proprietary edge termination structure, gives the lowest R_{DS}(on) per area, exceptional avalanche and dv/dt capabilities and unrivalled gate charge and switching characteristics.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITCH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES AND MOTOR DRIVE

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V
٧ _{DG.٦}	Drain- gate Voltage (R_{GS} = 20 k Ω)	500	V
Vus	Gate-source Voltage	± 30	V
ID	Drain Current (continuous) at T _c = 25 °C	20	А
ID	Drain Current (continuous) at T _c = 100 °C	12.7	A
I _{DM} (●)	Drain Current (pulsed)	80	А
P _{tot}	Total Dissipation at $T_c = 25$ °C	250	W
	Derating Factor	2	W/°C
dv/dt(1)	Peak Diode Recovery voltage slope	4	V/ns
T _{stg}	Storage Temperature	-65 to 150	°C
Тj	Max. Operating Junction Temperature	150	°C
) Pulse wid	th limited by safe operating area	(1) $I_{SD} \leq 20A$, di/dt $\leq 200 \text{ A}/\mu s$, $V_{DD} \leq V_{(BR)DSS}$, Tj	≤ T _{JMAX}

ABSOLUTE MAXINUM RATINGS

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	0.5	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	30	oC/W
R _{thc-sink}	Thermal Resistance Case-sink	Typ	0.1	°C/W
TI	Maximum Lead Temperature For Soldering F	Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, $\delta <$ 1%)	20	A
E _{AS}	Single Pulse Avalanche Energy (starting Tj = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)	1000	mJ

ELECTRICAL CHARACTERISTICS ($T_{case} = 25 \ ^{\circ}C$ unless otherwise specified) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating T_c = 125 °C			10 100	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 30 V$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	$V_{GS} = 10 V I_D = 10 A$		0.22	0.25	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 V$	20			A

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_{D} = 10 \text{ A}$	9	13.5		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25 V$ f = 1 MHz $V_{GS} = 0$		3600 460 55	4700 600 75	pF pF pF

57

ELECTRICAL CHARACTERISTICS (continued)

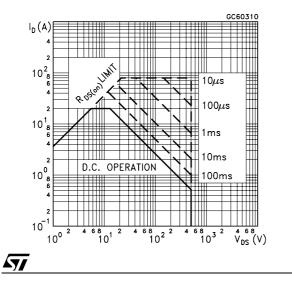
SWITCHING ON

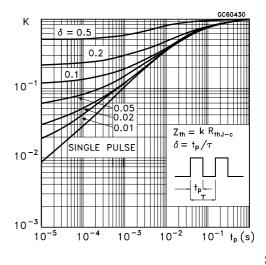
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time			32 15	43 21	ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 400 \text{ V}$ $I_D = 20 \text{ A}$ $V_{GS} = 10 \text{ V}$		85 21 37	110	nC nC nC

SWITCHING OFF

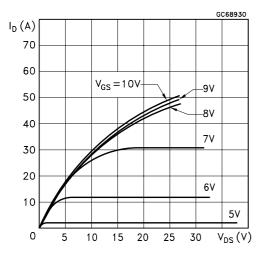
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
tf	Off-voltage Rise Time Fall Time Cross-over Time			20 25 47	27 33 62	ns ns ns

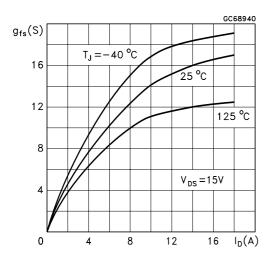
SOURCE DRAIN DIODE

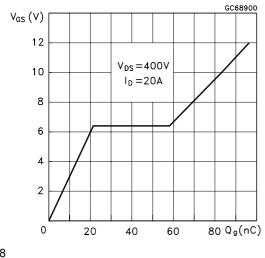

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (●)	Source-drain Current Source-drain Current (pulsed)				20 80	A A
V _{SD} (*)	Forward On Voltage	$I_{SD} = 20 \text{ A}$ $V_{GS} = 0$			1.6	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 20 \text{ A} \text{di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V} T_i = 150 ^{\circ}\text{C}$		700		ns
Q _{rr}	Reverse Recovery Charge	(see test circuit, figure 5)		9		μC
I _{RRM}	Reverse Recovery Current			25		A

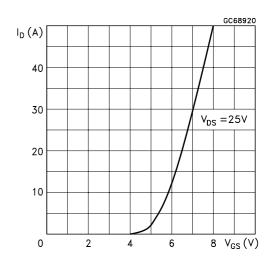

(*) Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

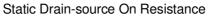
(•) Pulse width limited by safe operating area

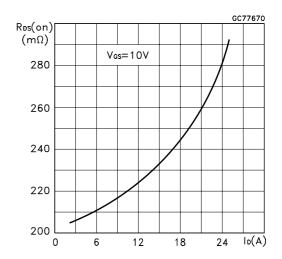

Safe Operating Area

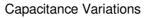


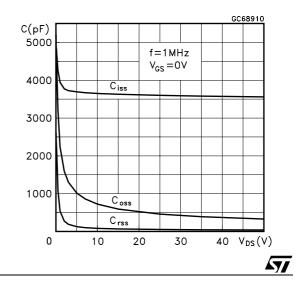

Output Characteristics

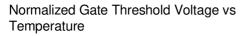

Transconductance

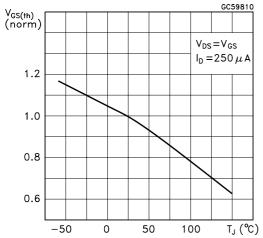


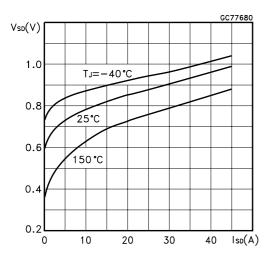

Gate Charge vs Gate-source Voltage

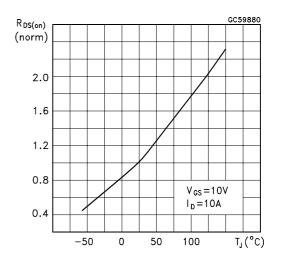



Transfer Characteristics









Source-drain Diode Forward Characteristics

Normalized On Resistance vs Temperature

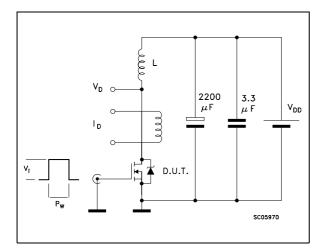
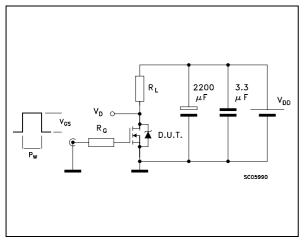
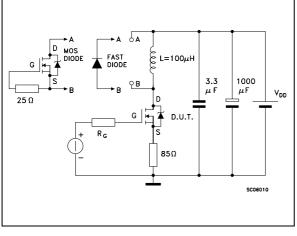




Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

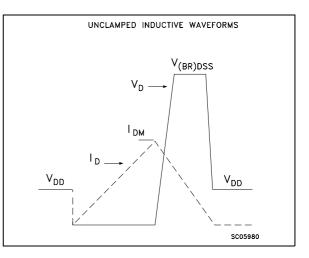
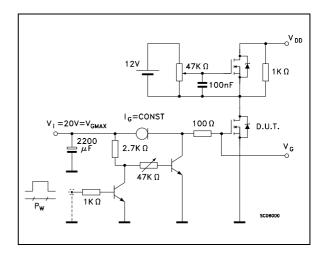



Fig. 4: Gate Charge test Circuit

57

DIM.		mm				
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.7		5.3	0.185		0.209
D	2.2		2.6	0.087		0.102
E	0.4		0.8	0.016		0.031
F	1		1.4	0.039		0.055
F3	2		2.4	0.079		0.094
F4	3		3.4	0.118		0.134
G		10.9			0.429	
Н	15.3		15.9	0.602		0.626
L	19.7		20.3	0.776		0.779
L3	14.2		14.8	0.559		0.582
L4		34.6			1.362	
L5		5.5			0.217	
М	2		3	0.079		0.118

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics

> © 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

8/8

A7