

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STB36NM60ND, STW36NM60ND

Automotive-grade N-channel 600 V, 0.097 Ω typ., 29 A FDmesh™ II Power MOSFETs (with fast diode) in D²PAK and TO-247 packages

Datasheet - production data

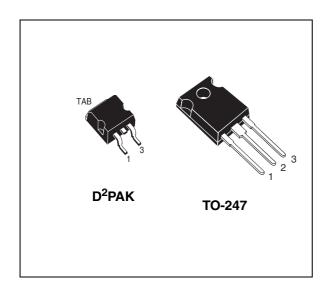
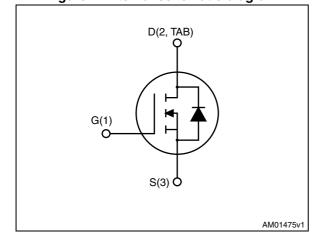



Figure 1. Internal schematic diagram

Features

Order codes	V _{DSS} @T _J max.	R _{DS(on)} max.	I _D
STB36NM60ND	650 V	0.110 Ω	29 A
STW36NM60ND	000 V	0.110 32	2071

- Designed for automotive applications and AEC-Q101 qualified
- 100% avalanche tested
- · Low input capacitance and gate charge
- Low gate input resistance
- Extremely high dv/dt and avalanche capabilities

Applications

· Automotive switching applications

Description

These FDmesh™ II Power MOSFETs with intrinsic fast-recovery body diode are produced using the second generation of MDmesh™ technology. Utilizing a new strip-layout vertical structure, these revolutionary devices feature extremely low on-resistance and superior switching performance. They are ideal for bridge topologies and ZVS phase-shift converters.

Table 1. Device summary

Order codes Marking		Package	Packaging
STB36NM60ND	36NM60ND	D ² PAK	Tape and reel
STW36NM60ND	36NM60ND	TO-247	Tube

Contents

1	Electrical ratings	. 3
2	Electrical characteristics	
3	Test circuits	. 9
4	Package mechanical data	10
5	Packaging mechanical data	15
6	Revision history	17

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	600	V
V _{GS}	Gate- source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	29	Α
I _D	Drain current (continuous) at T _C = 100 °C	18	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	116	Α
P _{TOT}	Total dissipation at T _C = 25 °C	190	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	40	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
T _J	Max. operating junction temperature	150	

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Doromotor	Va	lue	Unit
Symbol Parameter		D ² PAK	TO-247	Oill
R _{thj-case}	Thermal resistance junction-case max	0.66		°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	50		°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	30		°C/W

^{1.} When mounted on FR-4 board of 1 inch², 2 oz Cu.

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not- repetitive (pulse width limited by T _J max)	7	Α
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	110	mJ

^{2.} $I_{SD} \leq$ 29 A, di/dt \leq 600 A/ μ s, V_{DD} = 80% $V_{(BR)DSS}$, V_{DSPeak} < $V_{(BR)DSS}$

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 5. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 1 mA, V _{GS} = 0	600			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 600 V V _{DS} = 600 V, T _C =125 °C			1 100	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	3	4	5	٧
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 14.5 A		0.097	0.110	Ω

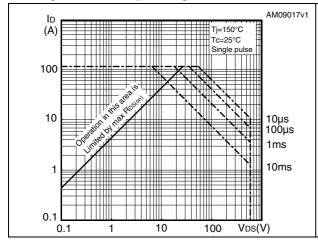
Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2785	-	pF
C _{oss}	Output capacitance	V _{DS} = 50 V, f = 1 MHz,	-	168	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	5	-	pF
Coss eq. (1)	Equivalent output capacitance	$V_{GS} = 0$, $V_{DS} = 0$ to 480 V	-	438	-	pF
t _{d(on)}	Turn-on delay time		-	30	-	ns
t _r	Rise time	V_{DD} =300 V, I_{D} = 14.5 A R_{G} = 4.7 Ω , V_{GS} = 10 V (see <i>Figure 16</i> and <i>21</i>)	-	53.4	-	ns
t _{d(off)}	Turn-off delay time		-	111	-	ns
t _f	Fall time	,	-	61.8	-	ns
Qg	Total gate charge	V _{DD} = 480 V, I _D = 29 A,	-	80.4	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V,	-	16	-	nC
Q _{gd}	Gate-drain charge	(see Figure 17)	-	41.4	-	nC
R _g	Gate input resistance	f=1 MHz , open drain	-	2.87	-	Ω

C_{oss eq} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current Source-drain current (pulsed)		-		29 116	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 29 A, V _{GS} = 0	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 29 A, V _{DD} = 60 V	-	175		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/μs	-	1.4		μC
I _{RRM}	Reverse recovery current	(see Figure 18)	-	16		Α
t _{rr}	Reverse recovery time	I _{SD} = 29 A,V _{DD} = 60 V	-	255		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/μs, T _{.I} = 150 °C	-	2.6		μC
I _{RRM}	Reverse recovery current	(see Figure 18)	-	20		Α


^{1.} Pulse width limited by safe operating area.

^{2.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area for D²PAK

Figure 3. Thermal impedance for D²PAK

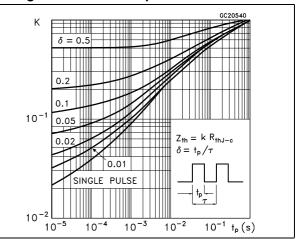
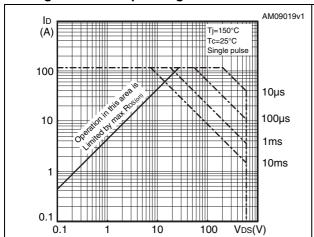



Figure 4. Safe operating area for TO-247

Figure 5. Thermal impedance for TO-247

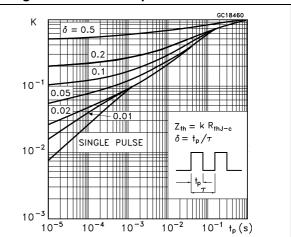
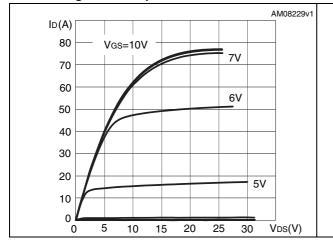
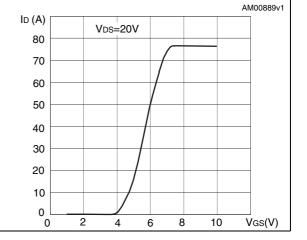




Figure 6. Output characteristics

Figure 7. Transfer characteristics

A7/

Figure 8. Gate charge vs gate-source voltage

Figure 9. Static drain-source on-resistance

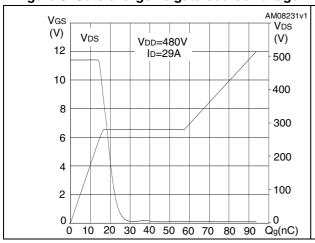
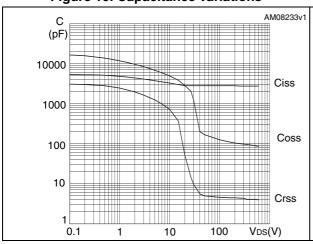



Figure 10. Capacitance variations

Figure 11. Output capacitance stored energy

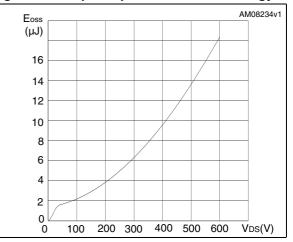
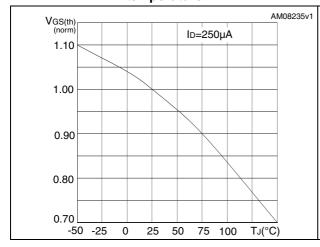



Figure 12. Normalized gate threshold voltage vs temperature

Figure 13. Normalized on-resistance vs temperature

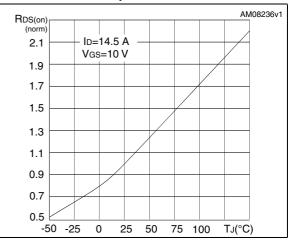
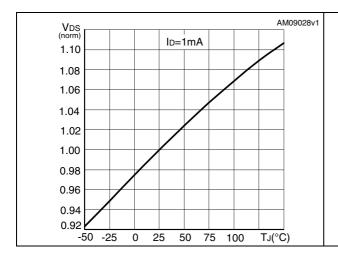
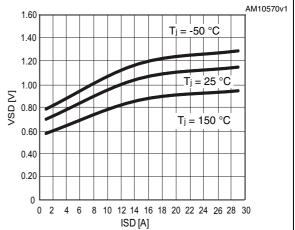




Figure 14. Normalized V_{DS} vs temperature

Figure 15. Source-drain diode forward vs temperature

3 Test circuits

Figure 16. Switching times test circuit for resistive load

Figure 17. Gate charge test circuit

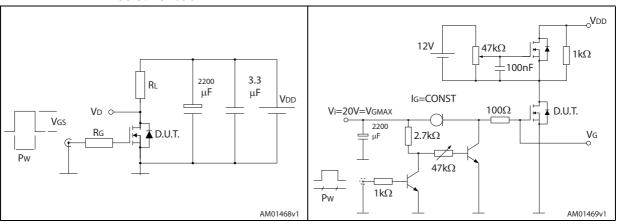


Figure 18. Test circuit for inductive load switching and diode recovery times

Figure 19. Unclamped inductive load test circuit

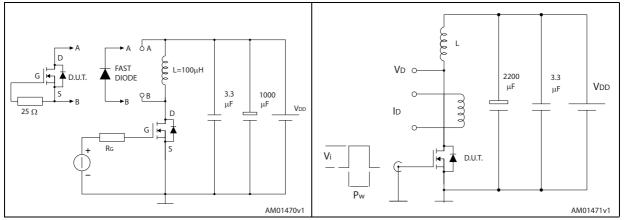
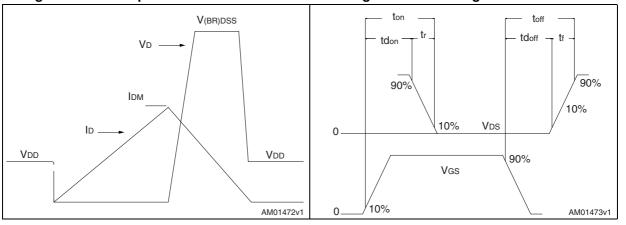



Figure 20. Unclamped inductive waveform

Figure 21. Switching time waveform

4 Package mechanical data

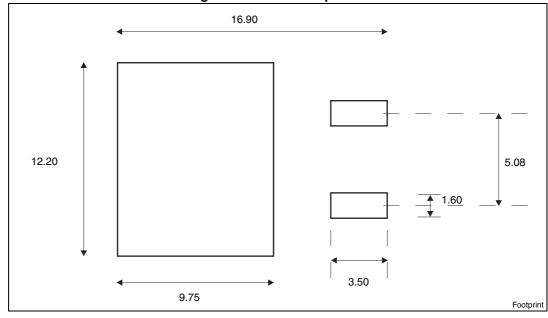
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10/18 DocID023785 Rev 3

Table 8. D²PAK (TO-263) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

SEATING PLANE
COPLANARITY A1


R

GAUGE PLANE
V2

0079457_T

Figure 22. D²PAK (TO-263) drawing

a. All dimensions are in millimeters

Table 9. TO-247 mechanical data

Dim		mm.	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

HEAT-SINK PLANE

OO75325, G

OO75325, G

Figure 24. TO-247 drawing

5 Packaging mechanical data

Table 10. D²PAK (TO-263) tape and reel mechanical data

Таре				Reel	
Dim.	m	ım	Dim.	n	nm
Dilli.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	Α		330
В0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1		Base qty	1000
P2	1.9	2.1	Bulk qty		1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Figure 25. Tape

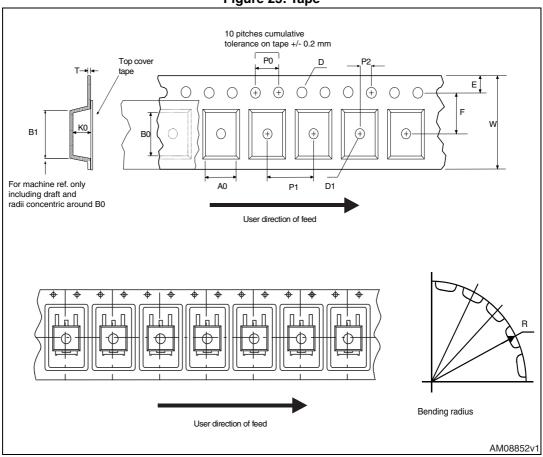
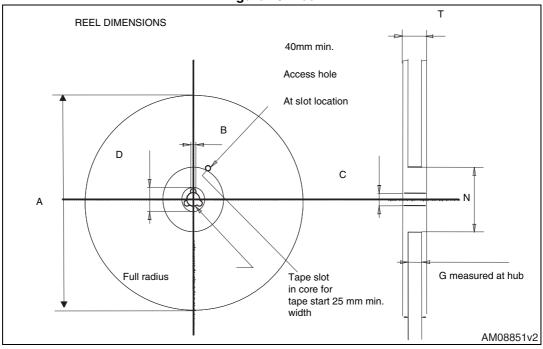



Figure 26. Reel

6 Revision history

Table 11. Document revision history

Date	Revision	Changes
24-Oct-2012	1	Initial release.
01-Jul-2013	2	- Updated Figure 1: Internal schematic diagram Added Section 2.1: Electrical characteristics (curves).
02-Oct-2013	3	 Modified: E_{AS} in <i>Table 4</i>, C_{oss eq.} typical value in <i>Table 6</i>, <i>Figure 13</i> Minor text changes

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID023785 Rev 3 18/18

