Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # Digital controller for wireless battery charger (WBC) transmitters Qi 1.1.2 A11 certified, PMA compatible Datasheet - production data #### **Features** - Digital controller for wireless battery charger transmitter - Multiple Qi certified and PMA standard compatible - Support for up to 5 W applications - Mobile - Wearable, sports gear, medical - Remote controllers - Native support to half-bridge and full bridge topologies - 5 V supply voltage - 2 firmware options - Turnkey solution for quick design - APIs available for application customization^(a) - Peripherals available via APIs^(a) - ADC with 10 bit precision and 1 $M\Omega$ input impedance - UART - I²C master fast/slow speed rate - GPIOs - Memory - Flash and E²PROM with read-while-write (RWW) and error correction code (ECC) - Program memory: 32 KBytes Flash; data retention 15 years at 85 °C after 10 kcycles at 25 °C - Data memory: 1 KByte true data E²PROM; data retention:15 years at 85 °C after 100 kcycles at 85 °C - RAM: 6 KBytes - · Reference design features - 2 layers PCBs - Active object detection - Graphical user interface for application monitoring - Evaluation boards - Operating temperature: -40 °C up to 105 °C - Package: VFQFPN32 # **Applications** - Certified Qi A11 - Evaluation board: STEVAL-ISB027V1 - Power rate: 5W - Input: 5V - Qi A13^(a) - Power rate: 5 W - Input: 5 16 V, 12 V - Wearable^(a) - Power rate: 2 W - Input: 5 V - PMA^(a) - power rate: 5 W - input: 5 V a. Contact local sale representative for further details: see www.st.com. Contents # **Contents** | 1 | Desc | cription | | 6 | |---|-------|-----------|---|----| | 2 | Intro | duction | n to wireless battery charging systems | 8 | | 3 | Cert | ified Qi | A11 solution | 9 | | | Firm | ware | | 9 | | 4 | Pino | ut and | pin description | 10 | | | 4.1 | Pinout | for STWBC in Qi A11 configuration | 10 | | | 4.2 | Pin de | scription | 11 | | 5 | Elec | trical ch | haracteristics | 13 | | | 5.1 | Param | neter conditions | 13 | | | | 5.1.1 | Minimum and maximum values | 13 | | | | 5.1.2 | Typical values | 13 | | | | 5.1.3 | Typical curves | 13 | | | | 5.1.4 | Typical current consumption | 13 | | | | 5.1.5 | Loading capacitors | 14 | | | | 5.1.6 | Pin output voltage | 15 | | | 5.2 | Absolu | ute maximum ratings | 15 | | | 5.3 | Opera | ting conditions | 17 | | | | 5.3.1 | VOUT external capacitor | 18 | | | | 5.3.2 | Internal clock sources and timing characteristics | 18 | | | | 5.3.3 | Memory characteristics | 20 | | | | 5.3.4 | I/O port pin characteristics | 21 | | | | 5.3.5 | Typical output level curves | 23 | | | | 5.3.6 | Fast pad | 25 | | | | 5.3.7 | Reset pin characteristics | 27 | | | | 5.3.8 | I ² C interface characteristics | 27 | | | | 5.3.9 | 10-bit SAR ADC characteristics | 28 | | | 5.4 | EMC o | characteristics | 31 | | | | 5.4.1 | Electrostatic discharge (ESD) | 31 | | | | 5.4.2 | Static latch-up | 31 | | | | | | | | STWBC | | | Contents | 3 | |-------|------|-------------------------|----------|---| | 6 | The | rmal characteristics | 32 | 2 | | 7 | Pacl | kage information | 33 | 3 | | | 7.1 | Package design overview | 33 | 3 | | | 7.2 | Package mechanical data | 34 | 1 | | 8 | Orde | er codes | 35 | 5 | | 9 | Revi | ision history | 3{ | 5 | List of tables STWBC # List of tables | Table 1. | Pinout description | 11 | |-----------|---|----| | Table 2. | Voltage characteristics | 15 | | Table 3. | Current characteristics | 16 | | Table 4. | Thermal characteristics | 16 | | Table 5. | General operating conditions | 17 | | Table 6. | Operating conditions at power-up/power-down | 17 | | Table 7. | HSI RC oscillator | 18 | | Table 8. | LSI RC oscillator | 19 | | Table 9. | PLL internal source clock | | | Table 10. | Flash program memory/data E ² PROM memory | 20 | | Table 11. | Voltage DC characteristics | 21 | | Table 12. | Current DC characteristics | 22 | | Table 13. | NRST pin characteristics | 27 | | Table 14. | I ² C interface characteristics | 27 | | Table 15. | ADC characteristics | | | Table 16. | ADC accuracy characteristics at V _{DD} /V _{DDA} 3.3 V | | | Table 17. | ADC accuracy characteristics at V _{DD} /V _{DDA} 5 V | 29 | | Table 18. | ESD absolute maximum ratings | 31 | | Table 19. | Electrical sensitivity | 31 | | Table 20. | Package thermal characteristics | 32 | | Table 21. | VFQFPN32 package dimensions | | | Table 22. | Silicon product order code | | | Table 23. | Document revision history | 35 | | | | | STWBC List of figures # List of figures | Figure 1. | STWBC device architecture | . 7 | |------------|---|------| | Figure 2. | System view of a wireless charging system | . 8 | | Figure 3. | STWBC pinout view | 10 | | Figure 4. | Supply current measurement conditions | 14 | | Figure 5. | Pin loading conditions | 14 | | Figure 6. | Pin input voltage | 15 | | Figure 7. | External capacitor C _{VOUT} | . 18 | | Figure 8. | V _{OH} standard pad at 3.3 V | 23 | | Figure 9. | V _{OL} standard pad at 3.3 V | 23 | | Figure 10. | V _{OH} standard pad at 5 V | 24 | | Figure 11. | V _{OL} standard pad at 5 V | 24 | | Figure 12. | V _{OH} fast pad at 3.3 V | 25 | | Figure 13. | V _{OL} fast pad at 3.3 V | 25 | | Figure 14. | V _{OH} fast pad at 5 V | 26 | | Figure 15. | V _{OL} fast pad at 5 V | 26 | | Figure 16. | ADC conversion accuracy | 30 | | Figure 17. | VFQFPN32 package outline | 33 | Description STWBC # 1 Description The STWBC is the digital controller for wireless battery charger (WBC) transmitters (TX) from STMicroelectronics, offering the most flexible and efficient solution for controlling power transfer to a receiver (RX) in WBC-enabled applications such as phones, wearables, and other battery powered devices that use electromagnetic induction for recharging. As a member of the Qi Wireless Power Consortium and the PMA (Power Matters Alliance), ST ensures full compatibility with these leading wireless charging protocols and holds certification for the Qi 1.1.2 A11 standard. The STWBC performs all the functions for transmitter control: thanks to the internal 96 MHz clock and supporting both half-bridge and full bridge topologies, it is able to precisely control the amount of transmitted power to match the requirements of the receiving unit in terms of maximizing the efficiency of the power transfer. The STWBC comes with firmware options to offer customers the ability to personalize their end product without the need of external microcontrollers: - A turnkey Qi 1.1.2 A11 certified solution, fully interoperable with Qi enabled mobile phones. - API (application programming interface) access to customize the underlying firmware, for example modifying the behavior of the LEDs or GPIOs in response to the receiver behavior and supporting I²C and UART communication within a network. The STWBC Qi 1.1.2 A11 certified solution is available in the STMicroelectronics STEVAL-ISB027V1 reference design, intended for all Qi compatible receivers such as in Qi enabled mobile phones. In the reference design the STWBC integrates the foreign object detection (FOD): the digital feedback between TX and RX units allows the detection of metal objects close to the receiver that could result in potential hazards, enabling the STWBC to stop power transmission when such objects are detected. The reference design is offered together with a complete ecosystem to support customers in building their applications, including the Qi 1.1.2 A11 certified board (STEVAL-ISB027V1), API libraries and documentation to develop software customizations, as well as a comprehensive graphical user interface to monitor real-time performance and diagnostics. STWBC Description Figure 1. STWBC device architecture # 2 Introduction to wireless battery charging systems Wireless battery charging systems replace the traditional power supply cable by means of electromagnetic induction between a transmitting pad (TX) and a battery powered unit (RX), such as a mobile phone or a battery pack. The power transmitter unit is responsible for controlling the transmitting coil and generating the correct amount of power requested by the receiver unit. The receiver unit continuously feedbacks to the transmitter the correct power level requested by modulating the transmitter carrier by means of a controlled resistive of capacitive insertion. Generating the correct amount of power guarantees the highest level of end-to-end efficiency due to reduced energy waste. Also, it helps maintaining a lower operational temperature. The digital feedback is also used to detect foreign objects, i.e.: metal incorrectly exposed to the coils. By stopping the application as soon as a foreign object is detected the risk of damage is reduced. Digital wireless battery transmitters can adapt the amount of energy transferred by the coil by modulating the frequency, duty cycles or coil input voltage. Figure 2. System view of a wireless charging system Thanks to the internal STWBC 96 MHz clock, support for half-bridge and full bridge topologies and protocol detection units, the STWBC can drive the power emitted by a transmitting coil. The STWBC firmware sits on the top of the hardware to monitor and control the correct wireless charging operations. 8/36 DocID027322 Rev 3 #### 3 Certified Qi A11 solution The STWBC has been certified for Qi A11, thanks to the STEVAL-ISB027V1 reference design. The certification is based on the Qi standard version 1.1.2 and supports FOD ("Foreign Object Detection"). The STEVAL-ISB027V1 reference design provides a complete kit which includes the STWBC IC, firmware, layout, graphical interfaces and tools. The layout is based on a cost-effective 2-layer PCB. ### **Firmware** The STWBC firmware is available in two separate software packages: - Turn-key: the firmware is distributed as a binary file. - API customizable: the firmware is designed as a library and external functions as well as peripherals can be added by means of APIs. The software APIs allow a great freedom of application customization. The STWBC and the API library can be accessed by programming the internal controller via standard programming tools such as the IAR $^{\text{TM}}$ Workbench $^{\text{®}}$ Studio. Every STWBC wireless charging architecture is a reference design supported by firmware, evaluation boards, application notes and PCB layouts notes. # 4 Pinout and pin description The STWBC is a multifunction device that can support several wireless charging architectures. The pinout is therefore application specific. *Section 4.1* shows the pinout used by the STWBC when the Qi A11 configuration is used. # 4.1 Pinout for STWBC in Qi A11 configuration Figure 3. STWBC pinout view 10/36 DocID027322 Rev 3 # 4.2 Pin description Table 1. Pinout description | Pin no. | Pin name | Pin type | API firmware description | Bin firmware description | |---------|--|----------|---|---| | 1 | UART_RX ⁽¹⁾ | DI | UART RX link | UART RX link | | 2 | PWM_AUX/GPIO_2 ⁽¹⁾ | DO | PWM output or GPO | Not used, must not be connected to any potential | | 3 | I2C_SDA/DIGIN [4] ⁽¹⁾ | | I2C_SDA / digital input 4 | inactive (internal pull-up) | | 4 | I2C_SCL/DIGIN [5] ⁽¹⁾ | | I2C_SCL / digital input 5 | inactive (internal pull-up) | | 5 | DRIVEOUT [3] | DO | Output driver for low-side branch right | Output driver for low-side branch right | | 6 | GPIO_0 ⁽¹⁾ | DO | Digital output for the green light indicator / general purpose I/O | Digital output for the green light indicator | | 7 | GPIO_1 ⁽¹⁾ | DO | Digital output for the red light indicator / general purpose I/O | Digital output for the red light indicator | | 8 | CPP_INT_3 | Al | Symbol detector | Symbol detector | | 9 | CPP_INT_2 | Al | Vmain monitor | Vmain monitor | | 10 | CPP_REF | Al | External reference for CPP_INT_3 (if not used, must be tied to GND) | External reference for CPP_INT_3 (if not used, must be tied to GND) | | 11 | CPP_INT_1 | Al | Symbol detector | Symbol detector | | 12 | CPP_INT_0 | Al | Symbol detector | Symbol detector | | 13 | VDDA | PS | Analog power supply | Analog power supply | | 14 | VSSA | PS | Analog ground | Analog ground | | 15 | TANK_VOLTAGE | Al | LC tank voltage probe | LC tank voltage probe | | 16 | VBRIDGE | | Inactive (to be tied to GND) | Inactive (to be tied to GND) | | 17 | SPARE_ADC ⁽¹⁾ | | Spare analog input (to be tied to GND if not used) | Spare analog input (to be tied to GND) | | 18 | NTC_TEMP | Al | NTC temperature measurement. | NTC temperature measurement. | | 19 | ISENSE | Al | LC tank current measurement | LC tank current measurement | | 20 | VMAIN | Al | Vmain monitor | Vmain monitor | | 21 | DRIVEOUT [0] | DO | Output driver for low-side branch left | Output driver for low-side branch left | | 22 | DIGIN [0] ⁽¹⁾ | | Digital input 0 | Inactive (internal pull-up) | | 23 | DIGIN [1] ⁽¹⁾ | | Digital input 1 | Inactive (internal pull-up) | | 24 | DRIVEOUT [1] | DO | Output driver for high-side branch left | Output driver for high-side branch left | | 0.5 | | | Output driver for high-side branch | Output driver for high-side branch | | 25 | DRIVEOUT [2] | DO | right | right | | 26 | DRIVEOUT [2] DIGIN [2] ⁽¹⁾ | DO | right Digital input 2 | right Inactive (internal pull-up) | Table 1. Pinout description (continued) | Pin no. | Pin name | Pin type | API firmware description | Bin firmware description | |---------|------------------------|----------|------------------------------|------------------------------| | 28 | NRST | DI | Reset | Reset | | 29 | VDD | PS | Digital and I/O power supply | Digital and I/O power supply | | 30 | VSS | PS | Digital and I/O ground | Digital and I/O ground | | 31 | VOUT | Supply | Internal LDO output | Internal LDO output | | 32 | UART_TX ⁽¹⁾ | DO | UART TX link | UART TX link | ^{1.} API configurable. #### 5 Electrical characteristics #### 5.1 Parameter conditions Unless otherwise specified, all voltages are referred to V_{SS} . V_{DDA} and V_{DD} must be connected to the same voltage value. V_{SS} and V_{SSA} must be connected together with the shortest wire loop. #### 5.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A$ max. (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in *Table 2*, *Table 3* and from *Table 5 on page 17* to *Table 17 on page 29* footnotes and are not tested in production. #### 5.1.2 Typical values Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} and V_{DDA} = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range. #### 5.1.3 Typical curves Unless otherwise specified, all typical curves are given as design guidelines only and are not tested. #### 5.1.4 Typical current consumption For typical current consumption measurements, V_{DD} and V_{DDA} are connected together as shown in *Figure 4*. **STWBC Electrical characteristics** 5 V or 3.3 V **VDDIO VDDIA GNDIO GNDA** GIPD090520131534FSR Figure 4. Supply current measurement conditions #### **Loading capacitors** 5.1.5 The loading conditions used for the pin parameter measurement are shown in *Figure 5*: Figure 5. Pin loading conditions #### 5.1.6 Pin output voltage The input voltage measurement on a pin is described in Figure 6. Figure 6. Pin input voltage ### 5.2 Absolute maximum ratings Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device reliability. Table 2. Voltage characteristics | Symbol | Ratings | Min. | Max. | Unit | |-------------------------------------|--|---|----------|------| | V _{DDX} - V _{SSX} | Supply voltage ⁽¹⁾ | -0.3 | 6.5 | V | | V _{IN} | Input voltage on any other pin ⁽²⁾ | VSS -0.3 | VDD +0.3 | V | | V _{DD} - V _{DDA} | Variation between different power pins | | 50 | mV | | V _{SS} - V _{SSA} | Variation between all the different ground pins ⁽³⁾ | | 50 | IIIV | | V _{ESD} | Electrostatic discharge voltage | Refer to absolute maximum ratings (electrical sensitivity) in Section 5.4.1 on page 31. | | | ^{1.} All power V_{DDX} (V_{DD} , V_{DDA}) and ground V_{SSX} (V_{SS} , V_{SSA}) pins must always be connected to the external power supply. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. ^{3.} V_{SS} and V_{SSA} signals must be interconnected together with a short wire loop. Electrical characteristics STWBC | Table | 2 | Current | charact | orietice | |-------|-----|---------|---------|----------| | Table | .5. | Current | cnaract | eristics | | Symbol | Ratings | Max. ⁽¹⁾ | Unit | |--|--|--------------------------------|------| | I _{VDDX} | I _{VDDX} Total current into VDDX power lines ⁽²⁾ | | | | l _{vssx} | Total current out of VSSX power lines ⁽²⁾ | 100 | | | I _{IO} | Output current sunk by any I/Os and control pin | Ref. to Table 11
on page 21 | mA | | | Output current source by any I/Os and control pin | | | | I _{INJ(PIN)} ⁽³⁾ , ⁽⁴⁾ | Injected current on any pin | ±4 | | | I _{INJ(TOT)} ⁽³⁾ , ⁽⁴⁾ , ⁽⁵⁾ | Sum of injected currents | ±20 | | - 1. Data based on characterization results, not tested in production - 2. All power V_{DDX} (V_{DD} , V_{DDA}) and ground V_{SSX} (V_{SS} , V_{SSA}) pins must always be connected to the external power supply. - I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} < V_{SS}. - 4. Negative injection disturbs the analog performance of the device. - 5. When several inputs are submitted to a current injection, the maximum $\Sigma_{\text{IINJ(PIN)}}$ is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with $\Sigma_{\text{IINJ(PIN)}}$ maximum current injection on four I/O port pins of the device. **Table 4. Thermal characteristics** | Symbol | Ratings | Max. | Unit | |------------------|------------------------------|------------|------| | T _{STG} | Storage temperature range | -65 to 150 | °C | | T _J | Maximum junction temperature | 150 | | ### 5.3 Operating conditions The device must be used in operating conditions that respect the parameters in *Table 5*. In addition, a full account must be taken for all physical capacitor characteristics and tolerances. Table 5. General operating conditions | Symbol | Parameter | Conditions | Min. | Тур. | Max. | Unit | |------------------------------------|--|-------------|--------------------|--------------------|--------------------|------| | V_{DD1}, V_{DDA1} | Operating voltages | | 3 ⁽¹⁾ | | 5.5 ⁽¹⁾ | | | V _{DD} , V _{DDA} | Nominal operating voltages | | 3.3 ⁽¹⁾ | | 5 ⁽¹⁾ | V | | | Core digital power supply | | | 1.8 ⁽²⁾ | | | | V _{OUT} | C _{VOUT} : capacitance of external capacitor ⁽³⁾ | | 470 | | 3300 | nF | | | ESR of external capacitor ⁽²⁾ | at 1 MHz | 0.05 | | 0.2 | Ω | | | ESL of external capacitor ⁽²⁾ | | | | | | | Θ _{JA} ⁽⁴⁾ | FR4 multilayer PCB | VFQFPN32 | | 26 | | °C/W | | T _A | Ambient temperature | Pd = 100 mW | -40 | | 105 | °C | - 1. The external power supply can be within range from 3 V up to 5.5 V. - 2. Internal core power supply voltage. - 3. Care should be taken when the capacitor is selected due to its tolerance, its dependency on temperature, DC bias and frequency. - 4. To calculate P_{Dmax} (T_A), use the formula P_{Dmax} = $(T_{Jmax} T_A)/\Theta_{JA}$. Table 6. Operating conditions at power-up/power-down | Symbol | Parameter | Conditions | Min. ⁽¹⁾ | Тур. | Max. ⁽²⁾ | Unit | |-------------------|--------------------------|------------------------|---------------------|------|---------------------|------| | t _{TEMP} | Reset release delay | V _{DD} rising | | 3 | | ms | | V _{IT} + | Power-on reset threshold | | 2.65 | 2.8 | 2.98 | V | | V _{IT} - | Brownout reset threshold | | 2.58 | 2.73 | 2.88 | V | - 1. Guaranteed by design, not tested in production. - 2. Power supply ramp must be monotone. Electrical characteristics STWBC #### 5.3.1 VOUT external capacitor The stabilization of the main regulator is achieved by connecting an external capacitor $C_{VOUT}^{(b)}$ to the VOUT pin. The C_{VOUT} is specified in *Section 5.3: Operating conditions*. Care should be taken to limit the series inductance to less than 15 nH. Figure 7. External capacitor C_{VOUT} #### 5.3.2 Internal clock sources and timing characteristics #### **HSI RC oscillator** The HSI RC oscillator parameters are specified under general operating conditions for V_{DD} and T_{A} . | Symbol | Parameter | Conditions | Min. ⁽¹⁾ | Тур. | Max. ⁽¹⁾ | Unit | |----------------------|---|--|---------------------|------|---------------------|------| | f _{HSI} | Frequency | | | 16 | | MHz | | ACC _{HSI} | Accuracy of HSI oscillator (factory calibrated) ⁽¹⁾ , ⁽²⁾ | V _{DD} = 3.3 V
T _A = 25 °C | -1% | | +1% | | | | | V_{DD} = 3.3 V
-40 °C \leq T _A \leq 105 °C | -4% | | +4% | % | | | | V_{DD} = 5 V
-40 °C ≤ T_A ≤ 105 °C | -4% | | +4% | | | t _{SU(HSI)} | HSI oscillator wakeup time including calibration | | | 1 | | μs | Table 7. HSI RC oscillator 18/36 DocID027322 Rev 3 ^{1.} Data based on characterization results, not tested in production. ^{2.} Variation referred to $f_{\mbox{\scriptsize HSI}}$ nominal value. b. ESR is the equivalent series resistance and ESL is the equivalent inductance. #### LSI RC oscillator The LSI RC oscillator parameters are specified under general operating conditions for V_{DD} and T_{A} . Table 8. LSI RC oscillator | Symbol | Parameter | Conditions | Min. ⁽¹⁾ | Тур. | Max. ⁽¹⁾ | Unit | |----------------------|----------------------------|---|---------------------|-------|---------------------|------| | f _{LSI} | Frequency | | | 153.6 | | kHz | | ACC _{LSI} | Accuracy of LSI oscillator | $3.3 \text{ V} \le \text{V}_{DD} \le 5 \text{ V}$
-40 °C $\le \text{T}_A \le 105 \text{ °C}$ | -10% | | 10% | % | | t _{SU(LSI)} | LSI oscillator wakeup time | | | 7 | | μs | ^{1.} Guaranteed by design, not tested in production. #### PLL internal source clock Table 9. PLL internal source clock | Symbol | Parameter | Conditions | Min | Тур. | Max. ⁽¹⁾ | Unit | |-------------------|--------------------------------|---|-----|------|---------------------|--------| | f _{IN} | Input frequency ⁽²⁾ | 0.07/ 17/ 157/ | | 16 | | MHz | | f _{OUT} | Output frequency | $3.3 \text{ V} \le \text{V}_{DD} \le 5 \text{ V}$
$-40 \text{ °C} \le \text{T}_{A} \le 105 \text{ °C}$ | | 96 | | IVITIZ | | t _{lock} | PLL lock time | 10 0 = 1 _A = 100 0 | | | 200 | μs | ^{1.} Data based on characterization results, not tested in production. ^{2.} PLL maximum input frequency 16 MHz. Electrical characteristics STWBC ### 5.3.3 Memory characteristics # Flash program and memory/data E²PROM memory General conditions: T_A = -40 °C to 105 °C. Table 10. Flash program memory/data E²PROM memory | Symbol | Parameter | Conditions | Min. ⁽¹⁾ | Typ. ⁽¹⁾ | Max. ⁽¹⁾ | Unit | |--------------------|--|---|---------------------|---------------------|---------------------|---------| | t _{PROG} | Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes) | | | 6 | 6.6 | ms | | | Fast programming time for 1 block (128 bytes) | | | 3 | 3.3 | | | t _{ERASE} | Erase time for 1 block (128 bytes) | | | 3 | 3.3 | ms | | | Erase/write cycles(⁽²⁾ (program memory) | T _A = 25 °C | 10 K | | | | | N _{WE} | Erase/write cycles ⁽²⁾ (data memory) | T _A = 85 °C | 100 K | | | Cycles | | | | T _A = 105 °C | 35 K | | | | | t _{RET} | Data retention (program memory) after 10 K erase/write cycles at T _A = 25 °C | T _{RET} = 85 °C | 15 | | | - Years | | | Data retention (program memory) after 10 K erase/write cycles at T _A = 25 °C | T _{RET} = 105 °C | 11 | | | | | | Data retention (data memory) after 100 K erase/write cycles at T _A = 85 °C | T _{RET} = 85 °C | 15 | | | | | | Data retention (data memory) after 35 K erase/write cycles at T _A = 105 °C | T _{RET} = 105 °C | 6 | | | | | I _{DDPRG} | Supply current during program and erase cycles | $-40 \text{ °C} \leq T_A \leq 105 \text{ °C}$ | | 2 | | mA | ^{1.} Data based on characterization results, not tested in production. ^{2.} The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte. ### 5.3.4 I/O port pin characteristics The I/O port pin parameters are specified under general operating conditions for V_{DD} and T_A unless otherwise specified. Unused input pins should not be left floating. Table 11. Voltage DC characteristics | Symbol | Description | Min. ⁽¹⁾ | Тур. | Max. ⁽¹⁾ | Unit | |------------------|---|--------------------------------------|--------------------|-----------------------|------| | V _{IL} | Input low voltage | -0.3 | | 0.3 * V _{DD} | | | V _{IH} | Input high voltage ⁽²⁾ | 0.7 * V _{DD} | | V_{DD} | | | V _{OL1} | Output low voltage at 3.3 V ⁽³⁾ | | | 0.4 ⁽⁴⁾ | | | V _{OL2} | Output low voltage at 5 V ⁽³⁾ | | | 0.5 | | | V _{OL3} | Output low voltage high sink at 3.3 V / 5 V ⁽²⁾ , ⁽⁵⁾ , ⁽⁶⁾ | | 0.6 ⁽⁴⁾ | | V | | V _{OH1} | Output high voltage at 3.3 V ⁽³⁾ | V _{DD} - 0.4 ⁽⁴⁾ | | | | | V _{OH2} | Output high voltage at 5 V ⁽³⁾ | V _{DD} - 0.5 | | | | | V _{OH3} | Output high voltage high sink at 3.3 V / 5 V ⁽²⁾ , ⁽⁵⁾ , ⁽⁶⁾ | V _{DD} - 0.6 ⁽⁴⁾ | | | | | H _{VS} | Hysteresis input voltage ⁽⁷⁾ | 0.1 * V _{DD} | | | | | R _{PU} | Pull-up resistor | 30 | 45 | 60 | kΩ | ^{1.} Data based on characterization result, not tested in production. ^{2.} All signals are not 5 V tolerant (input signals can't be exceeded V_{DDX} ($V_{DDX} = V_{DD}$, V_{DDA}). ^{3.} Parameter applicable to signals: GPIO_[0:2], DRIVEOUT[0:3], PWM_AUX. ^{4.} Electrical threshold voltage not yet characterized at -40 °C. ^{5.} Parameter applicable to signal: SWIM. ^{6.} Parameter applicable to signal: DIGIN [0]. ^{7.} Applicable to any digital inputs. Electrical characteristics STWBC **Table 12. Current DC characteristics** | Symbol | Description | Min. | Тур. | Max. ⁽¹⁾ | Unit | |--------------------|--|------|------|---------------------|------| | I _{OL1} | Standard output low level current at 3.3 V and V _{OL1} ⁽²⁾ | | | 1.5 | | | I _{OL2} | Standard output low level current at 5 V and V _{OL 2} ⁽²⁾ | | | 3 | | | I _{OLhs1} | High sink output low level current at 3.3 V and V _{OL3} ⁽³⁾ , ⁽⁴⁾ | | | 5 | | | I _{OLhs2} | High sink output low level current at 5 V and V _{OL} ⁽³⁾ , (4) | | | 7.75 | mA | | I _{OH1} | Standard output high level current at 3.3 V and V _{OH1} ⁽²⁾ | | | 1.5 | ША | | I _{OH2} | Standard output high level current at 5 V and V _{OLH2} ⁽²⁾ | | | 3 | | | I _{OHhs1} | High sink output low level current at 3.3 V and V _{OH3} ⁽³⁾ , ⁽⁴⁾ | | | 5 | | | I _{OHhs2} | High sink output low level current at 5 V and V _{OH3} ⁽³⁾ , ⁽⁴⁾ | | | 7.75 | | | I _{LKg} | Input leakage current digital - analog $V_{SS} \le V_{IN} \ge V_{DD}^{(5)}$ | | | ± 1 | μА | | l_ _{lnj} | Injection current ⁽⁶⁾ , ⁽⁷⁾ | | | ±4 | mA | | Σl_ _{lnj} | Total injection current (sum of all I/O and control pins) ⁽⁶⁾ | | | ± 20 | IIIA | - 1. Data based on characterization result, not tested in production. - 2. Parameter applicable to signals: GPIO_[0:2], DRIVEOUT[0:3], PWM_AUX. - 3. Parameter applicable to signal: SWIM. - 4. Parameter applicable to signal: DIGIN [0]. - 5. Applicable to any digital inputs. - 6. Maximum value must never be exceeded. - 7. Negative injection current on the ADCIN [7:0] signals (product depending) => SPARE_ADC signals have to avoid since impact the ADC conversion accuracy. #### 5.3.5 Typical output level curves This section shows the typical output voltage level curves measured on a single output pin for the two-pad family present in the STWBC device. #### Standard pad This pad is associated to the following signals: DIGIN [0:1], SWIM and GPIO_[0:2] when available. **STWBC Electrical characteristics** 6 5 4 Vdd=5V, T=-25°C 3 Vdd=5V, 2 T=30°C 1 Vdd=5V, T=105°C 0 8 10 12 14 16 18 20 Ioh [mA] Figure 10. V_{OH} standard pad at 5 V #### Fast pad 5.3.6 This pad is associated to the DRIVEOUT[0:3], PWM_AUX signals if the external pin is available. Figure 12. V_{OH} fast pad at 3.3 V