

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

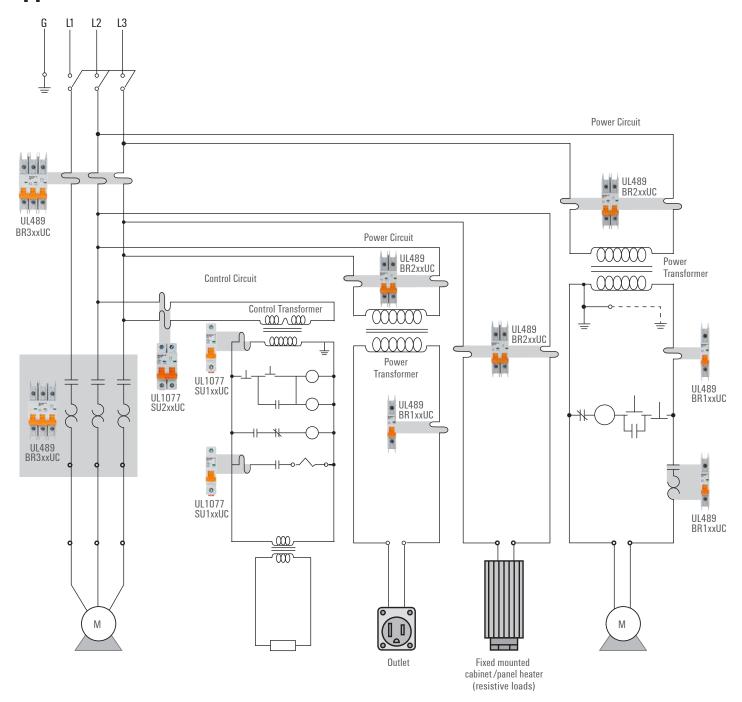
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



BR/SUxxxUC Series

Application Schematic

Sizing of main branch circuit protector according to table 430.52 in NEC $^{\! 8}$

• Dual Element (Time Delay) Fuse

Maximum fuse = largest motor FLA x 175%

+ FLA of all other motors and general loads in group

Inverse Time Breaker

Maximum circuit breaker = largest motor FLA x 250%

+ FLA of all other motors and general loads in group (for other fuse/breaker types see table 430.52)

UL 489 and UL 1077 DIN-Rail Miniature Circuit Breakers

Weidmuller offers a complete line of thermal magnetic circuit breakers with its BRxxxUC product line engineered for either AC or DC branch circuit protection and the SUxxxUC product line designed for supplementary protection. These circuit breakers are proven solutions to protect your wires and cables from application or device malfunctions.

Introduction	2
Choose the Right Weidmuller BR/SUxxxUC Series Miniature Circuit Breaker	2
Applications	3
BR and SU Series Product Overview	4
UL 489 DIN-Rail Branch Circuit Breakers	5
BRxxxUC Product Selection	6
UL 1077 DIN-Rail Supplementary Circuit Breakers	7
SUxxxUC Product Selection	8
Trip Curves	9
Accessories	11
Accessory Modules	11
Auxiliary Contact	11
Bell Alarm Contact	12
Shunt Trip	13
Accessory Modules Installation Diagram	14
Accessory Modules Mounting Instructions	15
Busbar and Busbar Accessories	16
Busbar UL 489 - Cuttable	16
Busbar UL 1077 - Cuttable	18
Terms	20
Additional Technical Information	21
Operation and Components of BR/SUxxxUC MCBs	21
Weidmuller UC Series Thermal Magnetic Definition	22
Examples of Trip Curve Interpretation - Reading Trip Curves	23
Ambient Temperature Derating	24
UC Series D Curve Thermal Magnetic Tripping Characteristics vs K Curve	25
Additional Weidmuller Offerings	27
CB4200 Series Circuit Breakers	27

Introduction

Choose the Right Weidmuller BR/SUxxxUC
Series Miniature Current Breaker (MCB)

(Always refer to the NEC before installing any device.

When considering the BR/SUxxxUC Series MCBs, always assess the application for the following: voltage rating, maximum interrupting capacity, continuous current rating, frequency, and atypical operating conditions (ambient temperature, moisture, vibration, altitude, installation or operation orientation, and field maintenance). The MCBs are intended to protect the circuit cables as well as motors, generators and transformers, thyristors and silicon rectifiers. They also provide additional protection of computers and their peripheral equipment, industrial process control systems, telecommunications equipment and power supplies.

Ask the following:

- Is the application an AC or DC circuit?
 Good news here, BR/SUxxxUC MCBs are rated for both AC and DC.
- Is a branch or supplemental breaker needed for the application?
 Branch devices may be used in place of supplemental but not vise versa.
- How many poles are needed for each circuit being protected?
 3p 3 phase no neutral, 2p L₁ and Neutral, 1p L₁ only.
- Calculate and/or measure the normal current for the circuit and follow NEC guidelines. Match the breaker amps based on the normal current load. Weidmuller's BR/SUxxxUC run 1 to 63 amps (See Technical Data on page 4).
- Determine potential failure mode(s).
 BR/SUxxxUC MCB thermal magnetic devices are designed for interrupt short-circuit and overload events.
- What is the interrupt capacity (IC)?
 Specify the breaker knowing the maximum fault current that
 can be repeatedly interrupted without failure of the breaker.
 BR/SUxxxUC MCBs have a maximum current at a given
 voltage that the breaker can interrupt safely without damage
 to surrounding components. (See Technical Data)
- What is the reaction time needed to a given fault condition?
 Specify a breaker by selecting a speed that avoids nuisance tripping but protects against component damage (B, C or D curve)

- What are the functional requirements of the breaker?
 The BR/SUxxxUC are rail mountable, easy to visually inspect, switch manually (or remotely trip with shunt trip devices) and monitor using an auxiliary contact. Mechanically 20,000 cycles and electrically 6,000 cycles.
- What is the wire size used? Can the breaker accept the wire sizes required?
 The BR/SUxxxUC are designed for ≤35mm².
- What are the environmental factors: ambient temperature, moisture, vibration?
 Check to determine if there are unusual conditions in which the breaker must operate. The BR/SUxxxUC are specified to IP20, -35°C ...70°C, and shock tested to IEC 60068-2-27.

Applications

- · Automotive Manufacturing
- Chemical, Oil and Gas
- Renewable Energy
- Rail Vehicles
- Automation
- Pharmaceutical and Food
- Steel Production
- Telecom and Datacom
- Power-D-Box-Systems
- Lighting Equipment
- Process Control

Pharmaceutical and Food

Chemical, Oil and Gas

Automotive Manufacturing

Rail Vehicles

BR and SU Series

Description

1-, 2- and 3-pole thermal-magnetic miniature circuit breakers (MCBs) in accordance with EN 60947-2, UL 1077 and UL 489 for DIN-rail mounting, with toggle actuation, visual status indication and high rupture capacity. A positively trip-free snap action mechanism ensures reliable switching behavior. A range of trip characteristics and add-on modules allow a great variety of applications.

Typical Applications

- Protection of cables, motors, generators and transformers, thyristors and silicon rectifiers.
- Protection of computers and their peripheral equipment, industrial process control systems, telecommunications equipment, power supplies.

BR Series UL 489 version

SU Series IEC/EN60947-2 & UL 1077 version

Technical Data

Voltage rati	ing and current r	ating range					
to IEC/EN 60	947-2		1-pole: AC 240 V; 1 A63 A; 2 and 3-pole: AC 415 V, 1 A63 A				
		1-pole: DC 8	0 V, 1 A	63 A			
		2-pole: (2 po DC 125 V, 1		cted in se	eries)		
to UL 1077		1-pole: AC 2 2 and 3-pole			1 A63 A		
		1-pole: DC 6	0 V; 1 A	.63 A			
		2-pole (2 po DC 125 V; 1		cted in se	ries):		
to UL 489		1-pole: AC 1 2 and 3-pole 1-pole: AC 2 2 and 3-pole	e: AC 240 77 V; 1 A	V, 1 A6 32 A;			
		1-pole: DC 6	0 V; 1 A	.63 A			
			2-pole (2 poles connected in series); DC 125 V; 1 A63 A				
Typical life							
Mechanically	/	20,000 cycl	20,000 cycles				
Electrically		6,000 cycles	6,000 cycles				
Interupt ca	pacity						
to IEC/EN 60	947-2 (Ics)	AC 7,500 A	AC 7,500 A / DC 10,000 A				
to IEC/EN 60	947-2 (Icu)	AC/DC 10,0	AC/DC 10,000 A				
to UL 489		AC/DC 10,0	AC/DC 10,000 A				
to UL1077							
Number of poles	Un	In	TC	OL	SC		
1-pole	AC 240 V	163 A	1	1	7.5 kA, U1		
1-pole	AC 277 V	163 A	1	0	5 kA, U1		
2-, 3-pole	AC 480 V	163 A	1	1	5 kA, U1		
1-pole	DC 60 V	163 A	1	0	7.5 kA, U1		
2-pole in series	DC 125 V	163 A	1	0	7.5 kA, U1		
Insulation coordination		6 kV/3 (rein	6 kV/3 (reinforced insulation at operating area)				

Degree of protection	IP20
Vibration (sinusoidal) test to IEC 60068-2-6, test Fc	± 0.38 mm (10–57 Hz), 5 g (57–500 Hz) 10 frequency cycles per axis
Shock, test to IEC 60068-2-27, test Ea	30 g (11 ms)
Corrosion, test to IEC 60068-2-11, test Ka	96 hrs in 5% salt mist
Humidity, test to IEC 60068-2-78, test Cab	48 hours at 95% RH, temperature +40°C
Terminals	screw terminals; Vertical connection possible by means of busbars
Tightening torque	2 Nm max.
Cable cross section	≤35 mm²
Ambient temperature	-35°C+70°C
Mounting	rail mounting
Mass	approx. 116 g per pole (EN 60947-2/ UL 1077) approx. 131 g per pole

Approvals

Approval			
authority	Standard	Rated voltage	Current ratings
ΤÜV	IEC/EN 60947-2	AC 240/415 V DC 80 V DC 125 V	163 A 163 A (1-pole) 163 A (2 poles in series)
UL	UL 1077 / CSA-C22.2 No. 235	AC 480Y/277 V DC 60 V DC 125 V	163 A 163 A (1-pole) 163 A (2 poles in series)
UL	UL 489 / CSA-C22.2 No. 5	AC 240 V AC 480Y/277 V DC 60 V DC 125 V	163 A 132 A 163 A (1-pole) 163 A (2 poles in series)

For information on Weidmuller's UL Certifications, visit the UL Online Certifications Directory and search by the UL file numbers E359481, E362204 and E359964.

UL 489 DIN-Rail Branch Circuit Breakers BRxxxUC

BR Series Product Selection Part Number Nomenclature

(Part Number found on the front of the breaker)

BR

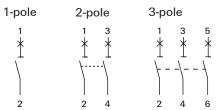
2

D

AC/DC Rated

UC

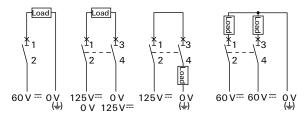
Rated Amps = 1, 1.2, 1.5, 1.6, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 15, 16, 20, 25, 30, 32, 35, 40, 50, 60, 63


Curve = B, C or D

60

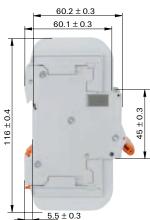
BR = Branch Rated Circuit Breakers

No. of Poles = 1, 2 or 3


Schematic Diagrams

DC Application

When using the BR/SUxxxUC in DC applications, polarity does not have to be observed. Maximum acceptable voltage between the conductors depends on the number of poles, circuitry and relevant standard / approval.


To UL 489:

Dimensions - UL 489 version

All dimensions without tolerances are for reference only. Weidmuller reserves the right to change specifications at any time without notice in the interest of improved design, performance and cost effectiveness.

BR Series Product Selection

= **B, C, or D Curve** (See Curve Drawings on page 9 and 10)

Amps	1 Pole			2 Pol	e			3 Pole		
1	BR1 1UC	MCB 489 1P	1A ACDC	BR2	1UC	MCB 489 2P	1A ACDC	BR3 1UC	MCB 489 3P	1A ACDC
1.2	BR1 1.2UC	MCB 489 1P	1.2A ACDC	BR2	1.2UC	MCB 489 2P	1.2A ACDC	BR3 1.2UC	MCB 489 3P	1.2A ACDC
1.5	BR1 1.5UC	MCB 489 1P	1.5A ACDC	BR2	1.5UC	MCB 489 2P	1.5A ACDC	BR3 1.5UC	MCB 489 3P	1.5A ACDC
1.6	BR1 1.6UC	MCB 489 1P	1.6A ACDC	BR2	1.6UC	MCB 489 2P	1.6A ACDC	BR3 1.6UC	MCB 489 3P	1.6A ACDC
2	BR1 2UC	MCB 489 1P	2A ACDC	BR2	2UC	MCB 489 2P	2A ACDC	BR3 2UC	MCB 489 3P	2A ACDC
3	BR1 3UC	MCB 489 1P	3A ACDC	BR2	3UC	MCB 489 2P	3A ACDC	BR3 3UC	MCB 489 3P	3A ACDC
4	BR1 4UC	MCB 489 1P	4A ACDC	BR2	4UC	MCB 489 2P	4A ACDC	BR3 4UC	MCB 489 3P	4A ACDC
5	BR1 5UC	MCB 489 1P	5A ACDC	BR2	5UC	MCB 489 2P	5A ACDC	BR3 5UC	MCB 489 3P	5A ACDC
6	BR1 6UC	MCB 489 1P	6A ACDC	BR2	6UC	MCB 489 2P	6A ACDC	BR3 6UC	MCB 489 3P	6A ACDC
7	BR1 7UC	MCB 489 1P	7A ACDC	BR2	7UC	MCB 489 2P	7A ACDC	BR3 7UC	MCB 489 3P	7A ACDC
8	BR1 8UC	MCB 489 1P	8A ACDC	BR2	8UC	MCB 489 2P	8A ACDC	BR3 8UC	MCB 489 3P	8A ACDC
10	BR1 10UC	MCB 489 1P	10A ACDC	BR2	10UC	MCB 489 2P	10A ACDC	BR3 10UC	MCB 489 3P	10A ACDC
12	BR1 12UC	MCB 489 1P	12A ACDC	BR2	12UC	MCB 489 2P	12A ACDC	BR3 12UC	MCB 489 3P	12A ACDC
13	BR1 13UC	MCB 489 1P	13A ACDC	BR2	13UC	MCB 489 2P	13A ACDC	BR3 13UC	MCB 489 3P	13A ACDC
15	BR1 15UC	MCB 489 1P	15A ACDC	BR2	15UC	MCB 489 2P	15A ACDC	BR3 15UC	MCB 489 3P	15A ACDC
16	BR1 16UC	MCB 489 1P	16A ACDC	BR2	16UC	MCB 489 2P	16A ACDC	BR3 16UC	MCB 489 3P	16A ACDC
20	BR1 20UC	MCB 489 1P	20A ACDC	BR2	20UC	MCB 489 2P	20A ACDC	BR3 20UC	MCB 489 3P	20A ACDC
25	BR1 25UC	MCB 489 1P	25A ACDC	BR2	25UC	MCB 489 2P	25A ACDC	BR3 25UC	MCB 489 3P	25A ACDC
30	BR1 30UC	MCB 489 1P	30A ACDC	BR2	30UC	MCB 489 2P	30A ACDC	BR3 30UC	MCB 489 3P	30A ACDC
32	BR1 32UC	MCB 489 1P	32A ACDC	BR2	32UC	MCB 489 2P	32A ACDC	BR3 32UC	MCB 489 3P	32A ACDC
35	BR1 35UC	MCB 489 1P	35A ACDC	BR2	35UC	MCB 489 2P	35A ACDC	BR3 35UC	MCB 489 3P	35A ACDC
40	BR1 40UC	MCB 489 1P	40A ACDC	BR2	40UC	MCB 489 2P	40A ACDC	BR3 40UC	MCB 489 3P	40A ACDC
50	BR1 50UC	MCB 489 1P	50A ACDC	BR2	50UC	MCB 489 2P	50A ACDC	BR3 50UC	MCB 489 3P	50A ACDC
60	BR1 60UC	MCB 489 1P	60A ACDC	BR2	60UC	MCB 489 2P	60A ACDC	BR3 60UC	MCB 489 3P	60A ACDC
63	BR1 63UC	MCB 489 1P	63A ACDC	BR2	63UC	MCB 489 2P	63A ACDC	BR3 63UC	MCB 489 3P	63A ACDC

UL 1077 DIN-Rail Supplementary Circuit Breakers SUxxxUC

SU Series Product Selection Part Number Nomenclature

(Part Number found on the front of the breaker)

2

D

60 UC

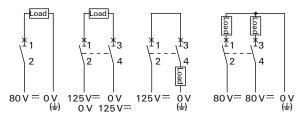
AC/DC Rated

Rated Amps = 1, 1.2, 1.5, 1.6, 2, 3, 4, 5, 6, 7, 8, 10, 12, 13, 15, 16, 20, 25, 30, 32, 35, 40, 50, 60, 63

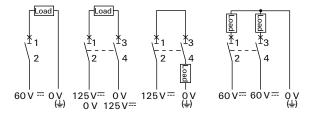
Curve = B, C or D

SU = Supplementary Protectors

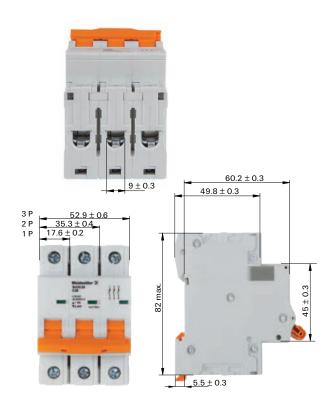
No. of Poles = 1, 2 or 3


Schematic Diagrams

1-pole	2-pole	3-pole
1 *	1 3 * *	1 3 5 * * *
	\\	
2	2 4	2 4 6


DC Application

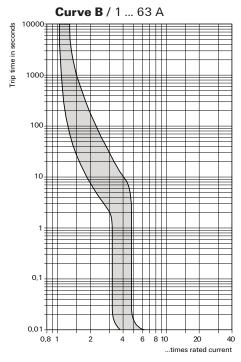
When using the BR/SUxxxUC in DC applications, polarity does not have to be observed. Maximum acceptable voltage between the conductors depends on the number of poles, circuitry and relevant standard / approval.


To IEC/EN 60947-2:

To UL 1077:

Dimensions - IEC/EN 60947-2 / UL1077 version

All dimensions without tolerances are for reference only. Weidmuller reserves the right to change specifications at any time without notice in the interest of improved design, performance and cost effectiveness.


SU Series Product Selection

= **B, C, or D Curve**(See Curve Drawings on page 9 and 10)

Amps	1 Pole		2 Pole			3 Pole		
1	SU1 1UC	MCB 1077 1P 1A ACDC	SU2 1UC	MCB 1077 2P	1A ACDC	SU3 1UC	MCB 1077 3P	1A ACDC
1.2	SU1 1.2UC	MCB 1077 1P 1.2A ACDC	SU2 1.2UC	MCB 1077 2P	1.2A ACDC	SU3 1.2UC	MCB 1077 3P	1.2A ACDC
1.5	SU1 1.5UC	MCB 1077 1P 1.5A ACDC	SU2 1.5UC	MCB 1077 2P	1.5A ACDC	SU3 1.5UC	MCB 1077 3P	1.5A ACDC
1.6	SU1 1.6UC	MCB 1077 1P 1.6A ACDC	SU2 1.6UC	MCB 1077 2P	1.6A ACDC	SU3 1.6UC	MCB 1077 3P	1.6A ACDC
2	SU1 2UC	MCB 1077 1P 2A ACDC	SU2 2UC	MCB 1077 2P	2A ACDC	SU3 2UC	MCB 1077 3P	2A ACDC
3	SU1 3UC	MCB 1077 1P 3A ACDC	SU2 3UC	MCB 1077 2P	3A ACDC	SU3 3UC	MCB 1077 3P	3A ACDC
4	SU1 4UC	MCB 1077 1P 4A ACDC	SU2 4UC	MCB 1077 2P	4A ACDC	SU3 4UC	MCB 1077 3P	4A ACDC
5	SU1 5UC	MCB 1077 1P 5A ACDC	SU2 5UC	MCB 1077 2P	5A ACDC	SU3 5UC	MCB 1077 3P	5A ACDC
6	SU1 6UC	MCB 1077 1P 6A ACDC	SU2 6UC	MCB 1077 2P	6A ACDC	SU3 6UC	MCB 1077 3P	6A ACDC
7	SU1 7UC	MCB 1077 1P 7A ACDC	SU2 7UC	MCB 1077 2P	7A ACDC	SU3 7UC	MCB 1077 3P	7A ACDC
8	SU1 8UC	MCB 1077 1P 8A ACDC	SU2 8UC	MCB 1077 2P	8A ACDC	SU3 8UC	MCB 1077 3P	8A ACDC
10	SU1 10UC	MCB 1077 1P 10A ACDC	SU2 10UC	MCB 1077 2P	10A ACDC	SU3 10UC	MCB 1077 3P	10A ACDC
12	SU1 12UC	MCB 1077 1P 12A ACDC	SU2 12UC	MCB 1077 2P	12A ACDC	SU3 12UC	MCB 1077 3P	12A ACDC
13	SU1 13UC	MCB 1077 1P 13A ACDC	SU2 13UC	MCB 1077 2P	13A ACDC	SU3 13UC	MCB 1077 3P	13A ACDC
15	SU1 15UC	MCB 1077 1P 15A ACDC	SU2 15UC	MCB 1077 2P	15A ACDC	SU3 15UC	MCB 1077 3P	15A ACDC
16	SU1 16UC	MCB 1077 1P 16A ACDC	SU2 16UC	MCB 1077 2P	16A ACDC	SU3 16UC	MCB 1077 3P	16A ACDC
20	SU1 20UC	MCB 1077 1P 20A ACDC	SU2 20UC	MCB 1077 2P	20A ACDC	SU3 20UC	MCB 1077 3P	20A ACDC
25	SU1 25UC	MCB 1077 1P 25A ACDC	SU2 25UC	MCB 1077 2P	25A ACDC	SU3 25UC	MCB 1077 3P	25A ACDC
30	SU1 30UC	MCB 1077 1P 30A ACDC	SU2 30UC	MCB 1077 2P	30A ACDC	SU3 30UC	MCB 1077 3P	30A ACDC
32	SU1 32UC	MCB 1077 1P 32A ACDC	SU2 32UC	MCB 1077 2P	32A ACDC	SU3 32UC	MCB 1077 3P	32A ACDC
35	SU1 35UC	MCB 1077 1P 35A ACDC	SU2 35UC	MCB 1077 2P	35A ACDC	SU3 35UC	MCB 1077 3P	35A ACDC
40	SU1 40UC	MCB 1077 1P 40A ACDC	SU2 40UC	MCB 1077 2P	40A ACDC	SU3 40UC	MCB 1077 3P	40A ACDC
50	SU1 50UC	MCB 1077 1P 50A ACDC	SU2 50UC	MCB 1077 2P	50A ACDC	SU3 50UC	MCB 1077 3P	50A ACDC
60	SU1 60UC	MCB 1077 1P 60A ACDC	SU2 60UC	MCB 1077 2P	60A ACDC	SU3 60UC	MCB 1077 3P	60A ACDC
63	SU1 63UC	MCB 1077 1P 63A ACDC	SU2 63UC	MCB 1077 2P	63A ACDC	SU3 63UC	MCB 1077 3P	63A ACDC

Trip Curves

Time/Current Characteristics

Magnetic tripping currents are increased by 30 % on DC supplies. Ambient temperature 30 $^{\circ}\text{C}$

Curve C / 1 ... 63 A Trip time in seconds 0.8 1 6 8 10

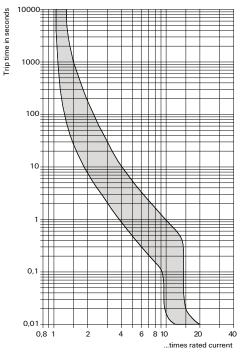
Magnetic tripping currents are increased by 30 % on DC supplies.

...times rated current

Ambient temperature 30 °C

Trip between 3-5X rated current (30-50 Amp for a 10 Amp device)

Residential and light commercial applications such as:


- Resistive loads (low surge current)
- Low switching surge current
- Wire protection
- Lighting
- Appliances

Trip between 5-10X rated current (50-100 Amp for a 10 Amp device)

Commercial applications such as:

- Inductive loads
- Motors (low inrush current)
- Control circuitry
- Lighting
- Appliances

Curve D / 1 ... 63 A

Magnetic tripping currents are increased by 30 % on DC supplies. Ambient temperature 30 $^{\circ}\text{C}$

Trip between 10-20X rated current (100-200 Amp for a 10 Amp device)

Industrial applications such as:

- High inductive and capacitive loads
- Motors (higher inrush current)
- Power supplies
- Transformers
- Heaters
- X-ray machines
- · Reactive loads

Current ratings and voltage drop at +25°C

Voltage d	Voltage drop in V at 1 I _N					
I _N (A)	1	1.2	1.5	1.6	2	3
V	1.50	1.50	0.80	0.80	0.80	0.60
I _N (A)	4	5	6	7	8	10
V	0.60	0.20	0.20	0.20	0.15	0.15
I _N (A)	12	13	15	16	20	25
V	0.15	0.10	0.10	0.10	0.08	0.08
I _N (A)	30	32	35	40	50	60
V	0.07	0.07	0.07	0.07	0.06	0.06
I _N (A)	63					
V	0.06					

 $\textbf{Note:} \ \text{When mounted side-by-side, the breakers can only carry up to } 80\%$ of their rated current or a higher rating has to be selected

Accessories

Auxiliary Contact

Description

Add-on module for circuit breaker type BR/SUxxxUC. The auxiliary switch has a change-over contact as signal contact and is operated with actuation of the MCB. The module has screw terminals and is rated for AC and DC voltages.

Typical Applications

Status monitoring of MCB and/or the connected loads.

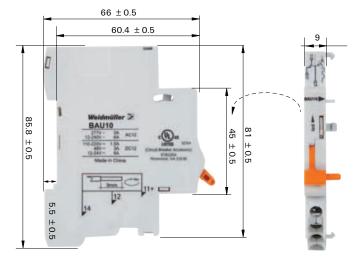
Technical Data

Rated currents to IEC/EN 60947-5-1:						
Voltage ratings:	AC 240 V	AC 415 V	DC 24 V	DC 48 V	DC 130 V	
Current ratings:	6 A	3 A	6 A	2 A	1 A	

Rated currents to UL 489:						
Voltage ratings:	AC 12 240 V	AC 277 V	DC 12 24 V	DC 48 V	DC 110 220 V	
Current ratings:	6 A	3 A	6 A	3 A	1.5 A	
Typical life	20,000 cycles					
Tightening to	orque	ue 1 Nm max.				
Ambient ten	nperature	-35°C+70°C				
Width		9 mm				
Mass approx. 29 g						

Approvals

Approval authority	Standard
TÜV	IEC/EN 60947-5-1
UL	UL 489


Schematic Diagrams

Note:

As soon as the auxiliary contact module is mounted on the MCB, the terminals 11 and 14 are connected when the MCB is in ON condition. Terminals 11 and 12 are connected when the MCB is in OFF condition.

Dimensions (in millimeters)

Bell Alarm Contact

Description

Add-on module for MCB type BR/SUxxxUC. The bell alarm contact has a change-over contact as signal contact. There will only be a signal when the MCB tripped on grounds of a failure (overload, short circuit), but and not when the MCB was switched on or off manually.

By actuating the reset lever on the front the tripping signal is acknowledged.

Typical Applications

Status monitoring of MCB and/or the connected loads.

Mounting

The add-on module is mounted on the left side of the MCB (seen from the front). For mounting, the MCB has to be in the OFF position.

Description	Part Number
MCB Bell Alarm Contact 1NC/1NO	BAU11UC

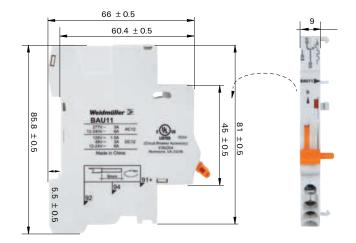
Technical Data

Rated currents to IEC/EN 60947-5-1:							
Voltage ratings:	AC 240 V	AC 415 V	DC 24 V	DC 48 V	DC 130 V		
Current ratings:	6 A	3 A	6 A	2 A	1 A		
Rated curr	ents to UL 489:						
Voltage	AC 12	AC 277 V	DC 12	DC 48 V	DC 110		

Rated curre	ents to UL 489	:			
Voltage ratings:	AC 12 240 V	AC 277 V	DC 12 24 V	DC 48 V	DC 110 220 V
Current ratings:	6 A	3 A	6 A	3 A	1.5 A
Typical life			20,000 cycles		
Tightening torque			1 Nm max.		
Ambient ten	nperature		-35°C+70°C	С	
Width			9 mm		
Mass			approx. 29 g		

Approvals

Approval authority	Standard
UL	UL 489



Schematic Diagrams

As soon as the bell alarm contact module is mounted on the MCB, the terminals 91 and 92 are connected when the MCB is in ON condition; the terminals 91 and 94 are connected when the MCB tripped electrically; the terminals 91 and 92 are connected when the MCB was tripped manually; at the same time the terminals 91 and 94 do not have contact.

Dimensions (in millimeters)

Shunt Trip

Description

Add-on module for MCB type BR/SUxxxUC. The shunt trip module serves for remote trip of the MCB and for signalling whether the MCB was tripped electrically or manually.

Typical Applications

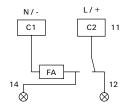
Electrical remote trip of safety equipment with simultaneous monitoring of MCB status or its connected load.

Mounting

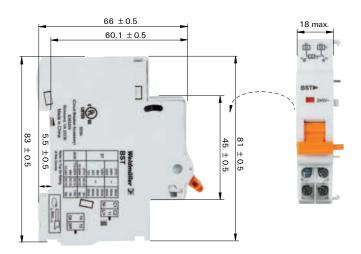
The add-on module is mounted on the left side of the MCB (seen from the front). For mounting, the MCB has to be in the OFF position. When auxiliary contact module/bell alarm contact module and a shunt trip module are mounted at the same time, the shunt trip module always has to be mounted first.

Description	Part Number
MCB SHUNT 1NC/1NO 12VDC	BST12VDC
MCB SHUNT 1NC/1NO 24VDC	BST24VDC
MCB SHUNT 1NC/1NO 48VDC	BST48VDC
MCB SHUNT 1NC/1NO 125VDC	BST125VDC
MCB SHUNT 1NC/1NO 120VA VAC	BST120VAC
MCB SHUNT 1NC/1NO 240VA VAC	BST240VAC
MCB SHUNT 1NC/1NO 277VA VAC	BST277VAC

Technical Data


Voltage ratings AC		AC 277 V	AC 240 V	AC 120 V
Min. trip voltage		AC 160 V	AC 160 V	AC 80 V
Power consumption min. response power		240 W 35 W	200 W 35 W	200 W 35 W
Rated current of auxiliary contact		3 A	6 A	6 A
Voltage ratings DC	DC 125 V	DC 48 V	DC 24 V	DC 12 V
Min. trip voltage	DC 80 V	DC 24 V	DC 16 V	DC 8 V
Power consumption min. response power	200 W 30 VA	200 W 30 VA	200 W 30 VA	200 W 30 VA
Rated current of auxiliary contact	1.5 A	2 A	6 A	6 A
Trip time	< '	10 ms		
Typical life	20	,000 cycles		
Tightening torque	1	Vm max.		
Ambient temperature	-3	5°C+70°C		
Width	18	3 mm		
Mass	ар	prox. 60 g		

Approvals


Approval authority	Standard
111	III 400

Schematic Diagrams

Dimensions (in millimeters)

Accessories

Compatibility

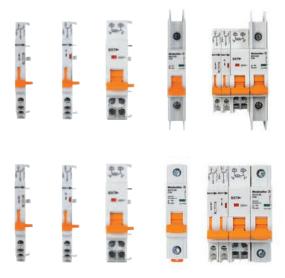
Туре	Part Number	Mount Position*	BRxxxUC	SUxxxUC
Auxiliary Contact Module	BAU10UC	Left	X	X
Bell Alarm Contact Module	BAU11UC	Left	X	Х
	BST12VDC	Left	X	Х
	BST24VDC	Left	X	Х
	BST48VDC	Left	X	Х
Shunt Trip Module	BST125VDC	Left	X	X
	BST120VAC	Left	Х	X
	BST240VAC	Left	Х	X
	BST277VAC	Left	Х	Х

^{*}Seen from the front

Preparing the MCB to connect the Auxiliary Contact, Bell Alarm Contact or Shunt Trip Module

- Use a small flat screwdriver to remove the clear plastic window (A) on the left side of the MCB (seen from the front). Do not remove the clear plastic window on the right side.
- Use the same screwdriver to remove the solid plastic cover (B) exposing the mechanical trip mechanism (C) beneath the window.
- For the BRxxxUCs only, slide the top and bottom fins forward and remove (D, E).
- For the BRxxxUCs, using small pliers remove the 2 plastic tabs on the fins (G1) and remove the 2 plugs from the breaker (F1) on the left side only.
 - For the SUxxxUCs, using small pliers remove the plugs from the breaker (F1).
 - G2 shows the plastic tabs removed and F2 shows the plugs removed.
- For the BRxxxUCs only, reattach the fins after installing the accessory module(s).

Accessory devices are left hand mounted only (seen from the front).


Accessories for Branch and Supplementary Circuit Breakers

Applies to BAU10UC, BAU11UC and BST:

The accessory modules can be installed on the left side only (seen from the front).

Mounting

- 1. Bring all orange levers of all devices into the "OFF" position
- 2. Insert guide pin into the lever handle notch (insertion depth approx. 7 mm)
- 3. Combine MCB and BAU10UC, BAU11UC or BST as outlined on page 14
- 4. Installation is complete when all snap together

Accessories

Busbars UL 489 - cuttable

Description

Busbars for the connection of circuit breakers type BRxxxUC to UL 489. The busbars of 1 meter length can individually be cut to a suitable length for the application and isolated with end caps. Depending on the control cabinet design, the supply is by means of supply terminals without increasing the installation width or by means of a terminal block directly on the rail without increasing the installation height.

Three busbar models are available for use with auxiliary contact modules with a width of 9 mm.

How to prepare the cuttable busbar

 The busbar can be cut to individually required lengths for maximum flexibility

2. After cutting, clean the cut face

Attach an end cap for maximum finger safety

Technical Data

Part Number	No. of Poles	No. of Devices	No. of Pins	Cross Section	Max. Amperage	Max. Voltage	Pitch
BRBB157	1	57	57			1000 V AC/DC	
BRBB256	2	28	56	_		600 V AC/DC	17.6 mm
BRBB357	3	19	57		18 mm ² 80 A	600 V AC/DC	
BRBB137A*	1	37	37	– 18 mm-		1000 V AC/DC	
BRBB246A**	2	23	46			600 V AC/DC	
BRBB348A***	3	16	48			600 V AC/DC	

^{*,**,***}See Ordering Data on page 17

Voltage Ratings	Single Phase	2 and 3 Phase
Max. AC Voltage	1000 V AC	600 V AC
Max. DC Voltage	1000 V DC	600 V DC
Current Ratings	End Feed	Center Feed
Max. Current 18 mm ² Cross Section	80 A	160 A†
Protection Class	IP20	
kA Rating (J Fuse)	14kA	

†Note: Two 115 A Feeder Terminals required per phase

Ordering Data

Ordering Data				
No. of Poles	No. of Devices	No. of Pins	Description	Part Number
1-Pole	12	12	MCB BUS BAR UL489 1 POLE 12 PIN	BRBB112
	18	18	MCB BUS BAR UL489 1 POLE 18 PIN	BRBB118
	57	57	MCB BUS BAR UL489 1 POLE 57 PIN	BRBB157
2-Pole	6	12	MCB BUS BAR UL489 2 POLE 12 PIN	BRBB212
	9	18	MCB BUS BAR UL489 2 POLE 18 PIN	BRBB218
	28	56	MCB BUS BAR UL489 2 POLE 56 PIN	BRBB256
3-Pole	4	12	MCB BUS BAR UL489 3 POLE 12 PIN	BRBB312
	6	18	MCB BUS BAR UL489 3 POLE 18 PIN	BRBB318
	19	57	MCB BUS BAR UL489 3 POLE 57 PIN	BRBB357
*1-Pole with Auxiliary Module Spacing	37	37	MCB BUS BAR UL489 1 POLE 37 PIN AUX	BRBB137A
**2-Pole with Auxiliary Module Spacing	23	46	MCB BUS BAR UL489 2 POLE 46 PIN AUX	BRBB246A
***3-Pole with Auxiliary Module Spacing	16	48	MCB BUS BAR UL489 3 POLE 48 PIN AUX	BRBB348A

Description	Part Number
Feeder Terminal, UL 489, 115 A	BRBBPWR35

Description	Part Number
Bottom/Direct Feeder Terminal, UL 489, 115 A	BRBBPWR50

Description	Part Number
Endcap for UL 489 Cuttable Busbar	BRBBECAP

Description	Part Number
Protective Cap for UL 489 cuttable busbar, 3 caps per bar	BRBBPCAP

Description	Part Number
Lock-on, Lock-off Device	LD10

Feeder Terminal

Bottom/Direct Feeder Terminal

Endcap

Protective Cap

Lock-on, Lock-off **Device**

Busbars UL 1077 - cuttable

Description

Busbars for the connection of circuit breakers type SUxxxUC to UL 1077. The busbars of 1 meter length can individually be cut to a suitable length for the application and isolated with end caps. Depending on the control cabinet design, the supply is by means of supply terminals without increasing the installation width or by means of a terminal block directly on the rail without increasing the installation height.

Three busbar models are available for use with auxiliary contact modules with a width of 9 mm.

How to prepare the cuttable busbar

1. Use a saw to cut the busbar to the desired length

2. Slide the copper bars from the insulation and cut back the bars for proper end clearances

3. Deburr the edges

4. Use a stiff brush or compressed air to remove any copper or plastic filings and reassemble the busbar

5. Attach endcaps Note: For safety purposes, all shortened busbars need to be covered with suitable endcaps

Technical Data

Voltage Ratings	Single Phase	2 and 3 Phase
Max. AC Voltage	1000 V AC	600 V AC
Max. DC Voltage	1000 V DC	600 V DC
Current Ratings	End Feed	Center Feed
Max. Current 18 mm ² Cross Section	80 A	160 A†
Protection Class	IP20	
kA Rating (J Fuse)	14kA	

†Note: Two 115 A Feeder Terminals required per phase

Ordering Data

No. of Poles	No. of Devices	No. of Pins	Description	Part Number
1-Pole	12	12	MCB BUS BAR UL1077 1 POLE 12 PIN	SB112
	18	18	MCB BUS BAR UL1077 1 POLE 18 PIN	SB118
	57	57	MCB BUS BAR UL1077 1 POLE 57 PIN	SB157
2-Pole	6	12	MCB BUS BAR UL1077 2 POLE 12 PIN	SB212
	9	18	MCB BUS BAR UL1077 2 POLE 18 PIN	SB218
	28	56	MCB BUS BAR UL1077 2 POLE 56 PIN	SB256
3-Pole	4	12	MCB BUS BAR UL1077 3 POLE 12 PIN	SB312
	6	18	MCB BUS BAR UL1077 3 POLE 18 PIN	SB318
	19	57	MCB BUS BAR UL1077 3 POLE 57 PIN	SB357
1-Pole with Auxiliary Module Spacing	37	37	MCB BUS BAR UL1077 1 POLE 37 PIN AUX	SB1A37
2-Pole with Auxiliary Module Spacing	23	46	MCB BUS BAR UL1077 2 POLE 46 PIN AUX	SB2A46
3-Pole with Auxiliary Module Spacing	16	48	MCB BUS BAR UL1077 3 POLE 48 PIN AUX	SB3A48

Description	Part Number
MCB BUS BAR UL1077 1P TERM TOP FEED	SPF351P
MCB BUS BAR UL1077 2/3P TERM TOP FEED	SPF35

Bottom/Direct Feeder Terminal

Description	Part Number
MCB BUS BAR UL1077 1/2/3P TERM BOT FEED	SPF50

Endcap

Description	Part Number
MCB BUS BAR UL1077 1P END CAP	SEC1P
MCB BUS BAR UL1077 2/3P END CAP	SECMP

Protective Cap

Description	Part Number
MCB BUS BAR UL1077 BUS CAP YEL (5 caps)	STPC

Lock-on, Lock-off Device

Description	Part Number
Lock-on, Lock-off Device	LD10

1P Top Feed **Terminal**

2/3P Top Feed **Terminal**

Bottom/Direct Feeder Terminal

Endcap

Protective Cap

Lock-on, Lock-off Device

Terms

Weidmuller UC Series breakers are UL tested and certified as current limiting protective devices. Current limiting circuit breakers provide a higher level of circuit protection than a typical zero point external breakers.

Ampere Rating

A rating of the amount of current a protective device will carry continuously without deteriorating or exceeding temperature rise limits.

Arc

The effect generated when electrical current bridges the air gap between two conductors that are not touching.

Branch Circuit

The conductor and components following the last over-current protective device protecting a load.

Circuit Breaker

A device designed to open and close a circuit by non-automatic means, and to open the circuit automatically on a pre-determined overcurrent, without damage to itself when properly applied within its rating.

Current Limiting

A type of supplementary protector which limits the amount of damaging short circuit current.

DIN-Rail

A solidly mounted, rail-type device to which any number of circuit breakers can be mounted.

Double Pole

Term used to describe a breaker that draws power from two poles of a load center or similar device.

Frame

A component of a miniature circuit breaker. Its primary function is to provide a rigid, mechanically strong, insulated housing in which the other components are mounted.

IEC

Abbreviation for International Electrotechnical Commission. This organization is associated with equipment used internationally.

IEC 60947-2 Current Limiting Circuit Breaker

A circuit breaker with sufficiently short trip time to prevent the short circuit current from reaching the peak value which would otherwise be reached.

Interrupting Rating

The highest current, at rated voltage, that a device is intended to interrupt under standard test conditions.

Let-through Current

The maximum instantaneous or peak current which passes through a protective device.

Load Center

A device that delivers electricity from a supply source to loads in light commercial or residential applications.

Miniature Circuit Breaker (MCB)

A specific type of circuit breaker, used to switch and protect the lowest common distribution voltage in an electrical system. Generally used in a load center, panelboard or similar device.

NEC

Abbreviation for National Electrical Code. A standard for applying electrical equipment in the United States.

NEC240.2 Current Limiting

A device that, when interrupting current in its current-limiting range, reduces the current flowing in the faulted circuit to a magnitude substantially less than that obtainable in the same circuit if the device were replaced with a solid conductor having comparable impedance.

Operating Mechanism

A component of a miniature circuit breaker. Its function is to provide the means of opening and closing the circuit.

Overcurrent Protective Device

A device such as a circuit breaker or fuse. In the event of an overload or short circuit, this device will quickly terminate power to the circuit.

Overload (or Overcurrent)

A condition in which current is in excess of the normal load being drawn.

Short Circuit

An electrical fault created when two exposed conductors touch.

Single Pole

Term used to describe a breaker that draws power from one pole of a load center or similar device.

Supplementary Protector

A device similar in function to a miniature circuit breaker, but not UL approved as a circuit breaker. Used in conjunction with circuit breakers.

Thermal Magnetic

The predominant trip unit technology used in the domestic market. A bimetal and an electromagnet work together to provide overload and short circuit protection.

UL AC 60Hz Cycle

UL defines an AC cycle as the potential energy of the wave form traveling from Zero-to-Positive amplitude, Positive-to-Zero amplitude, Zero-to-Negative amplitude, Negative-to-Zero amplitude 60 times in one second. One cycle is completed every 16.6 milliseconds.

UL Breaker Current Limiting

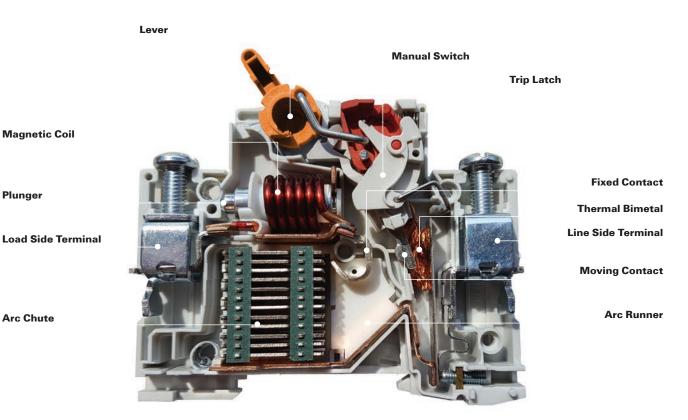
UL defines breaker current limitation as a breaker that interrupts and isolates a fault in less than half of an AC cycle. Half a cycle is completed in 8.3 milliseconds.

Withstand Rating

The maximum current that an unprotected electrical component can sustain for a specific period of time without the occurrence of extensive damage.

Additional Technical Information

During normal operation and the MCB switch engaged, current flows in the line side terminal to a bimetallic strip, moving contact, fixed contact, current coil (magnetic trip coil) and out the load side terminal to complete a series path.


The MCB enclosure housing is a molded plastic material. This provides mechanical strength and insulation from the components inside. The switching system consists of a fixed and a moving contact plate to which incoming and outgoing conductors are connected. The current carrying components are made up of various metallic compounds depending on the rating of the circuit breaker.

The orange lever is used to manually engage/disengage the contact under normal ON/OFF conditions, as well as indicate status of the device. It also allows manual RESET of the latch after an overload or short circuit event.

The thermal overload configuration for the slow rising current over time consists of a strip of bimetal (two dissimilar metals). The rise in current causes a rise in temperature. The heat generated within the bimetal itself is enough to cause deflection due to thermal expansion of the dissimilar metals. This deflection further releases the trip latch mechanism and the contact faces separate.

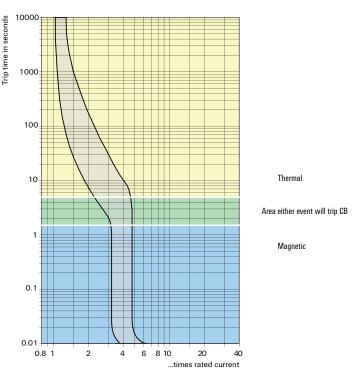
The magnetic tripping configuration for short circuit conditions consists of a system that allow fast rise time current (too fast for the bimetal) to separate the contact faces using a spring loaded plunger. The current carrying coil in this trip configuration moves the plunger when a strong magnetic field produced by the coils releasing the plunger engaging the trip latch mechanism.

From the action of the fixed and moving contact faces separating in the event of an overload or short circuit situation, an electric arc in air is formed. The UC Series is designed to handle the arc interruption process where arc energy extraction and its cooling are provided by the arc runner and parallel arc splitter plates called the arc chute. These plates are held in position by the housing material. The operating mechanism consists of both magnetic tripping and thermal tripping arrangements.

Thermal Overload

A thermal overload is a slow and small overcurrent situation that causes the ampacity and temperature of the circuit to gradually increase. This type of event is characterized by a slight increase in the load (ampacity) on the circuit and is interrupted by the thermal trip unit of the breaker.

Region of the trip curve representing the tripping characteristics of the bimetal trip unit. The tripping region is sloped due to the gradual overload, heating, and bending nature of the thermal element over time.

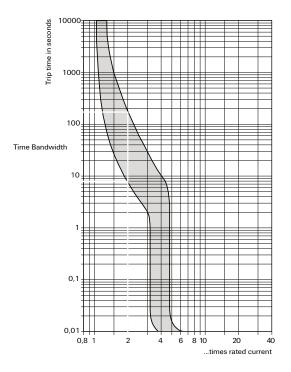

Short Circuit

A short circuit is an intense overcurrent situation that causes the ampacity of the circuit to increase. This type of event is characterized by a dramatic increase in the load (ampacity) on the circuit and is interrupted by the magnetic trip unit of the breaker.

Magnetic Region of the trip curve representing the tripping characteristics of the magnetic trip unit. The tripping region is not sloped due to the instantaneous nature of the magnetic element during a short circuit.

MCBs' tripping characteristics are represented graphically in a trip curve chart. The chart shows the response of the thermal and magnetic trip element to various overload and short circuit situations.

Time/Current Characteristics

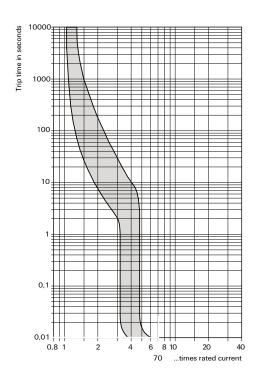

Example 1: Thermal Tripping Characteristic

10 Amp B Curve Breaker **Thermal Overload at 20 Amps**

To determine the time it takes for the breaker to trip with a 20 A load:

- Find 20 A on the bottom of the curve –10 A breaker at 2X current is 20 A
- Follow the ampacity line up to the "time" tripping region of the curve.

The breaker will trip under a thermal overload in the area between where 20 A intersects the bottom curve line and the intersection of the top curve. The breaker is guaranteed to trip in this time bandwidth.


Example 2: Magnetic Tripping Characteristic

10 Amp B Curve Breaker **Short Circuit at 70 Amps**

To determine the time it takes for the breaker to trip with a 70 A short circuit:

- Find 70 A on the bottom of the curve -10 A breaker at 7X current is 70 A
- Notice the "time" at the bottom left corner of the chart axis.

The breaker is guaranteed to trip no later than .01 seconds for any short circuit equal to 70 A.

