
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

© 2008 Microchip Technology Inc. DS51456E

16-BIT LANGUAGE TOOLS

LIBRARIES

DS51456E-page ii © 2008 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer�s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,

dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,

PICSTART, PRO MATE, rfPIC and SmartShunt are registered

trademarks of Microchip Technology Incorporated in the

U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,

SEEVAL, SmartSensor and The Embedded Control Solutions

Company are registered trademarks of Microchip Technology

Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,

dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,

ECONOMONITOR, FanSense, In-Circuit Serial

Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB

Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,

PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,

PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total

Endurance, UNI/O, WiperLock and ZENA are trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2008, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:

� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip�s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as �unbreakable.�

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip�s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company�s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip�s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

16-BIT LANGUAGE TOOLS

LIBRARIES

© 2008 Microchip Technology Inc. DS51456E-page iii

Table of Contents

Preface ... 1

Chapter 1. Library Overview

1.1 Introduction ... 7

1.2 OMF-Specific Libraries/Start-up Modules .. 8

1.3 Start-up Code ... 8

1.4 DSP Library .. 8

1.5 16-Bit Peripheral Libraries .. 8

1.6 Standard C Libraries with Math and Support Functions 9

1.7 Fixed Point Math Functions .. 9

1.8 Compiler Built-in Functions .. 9

Chapter 2. Standard C Libraries

2.1 Introduction ... 11

2.2 Using the Standard C Libraries .. 12

2.3 <assert.h> diagnostics ... 13

2.4 <ctype.h> character handling ... 14

2.5 <errno.h> errors ... 23

2.6 <float.h> floating-point characteristics .. 24

2.7 <limits.h> implementation-defined limits .. 29

2.8 <locale.h> localization .. 31

2.9 <setjmp.h> non-local jumps ... 32

2.10 <signal.h> signal handling .. 33

2.11 <stdarg.h> variable argument lists ... 39

2.12 <stddef.h> common definitions .. 41

2.13 <stdio.h> input and output .. 43

2.14 <stdlib.h> utility functions ... 90

2.15 <string.h> string functions .. 114

2.16 <time.h> date and time functions ... 137

Chapter 3. Standard C Libraries - Math Functions

3.1 Introduction ... 145

3.2 Using the Standard C Libraries .. 145

3.3 <math.h> mathematical functions .. 147

16-Bit Language Tools Libraries

DS51456E-page iv © 2008 Microchip Technology Inc.

Chapter 4. Standard C Libraries - Support Functions

4.1 Introduction ... 189

4.2 Using the Support Functions .. 190

4.3 Standard C Library Helper Functions ... 191

4.4 Standard C Library Functions That Require Modification 196

4.5 Functions/Constants to Support A Simulated UART 197

4.6 Functions for Erasing and Writing EEDATA Memory 199

4.7 Functions for Erasing and Writing Flash Memory 201

4.8 Functions for Specialized Copying and Initialization 203

Chapter 5. Fixed Point Math Functions

5.1 Introduction ... 207

5.2 Using the Fixed Point Libraries .. 207

5.3 <libq.h> mathematical functions ... 209

Appendix A. ASCII Character Set ...227

Index ...229

Worldwide Sales and Service ...242

16-BIT LANGUAGE TOOLS
LIBRARIES

© 2008 Microchip Technology Inc. DS51456E-page 1

Preface

INTRODUCTION

This chapter contains general information that will be useful to know before using 16-bit
libraries. Items discussed include:

� Document Layout

� Conventions Used in this Guide

� Recommended Reading

� The Microchip Web Site

� Development Systems Customer Change Notification Service

� Customer Support

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:

� Chapter 1: Library Overview � gives an overview of libraries. Some are described
further in this document, while others are described in other documents or on-line
Help files.

� Chapter 2: Standard C Libraries � lists the library functions and macros for stan-
dard C operation.

� Chapter 3: Standard C Libraries - Math Functions � lists the math functions for
standard C operation.

� Chapter 4: Standard C Libraries - Support Functions � lists standard C library
helper functions.

� Appendix A: ASCII Character Set

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and

documentation are constantly evolving to meet customer needs, so some actual dialogs

and/or tool descriptions may differ from those in this document. Please refer to our web site

(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a �DS� number. This number is located on the bottom of each

page, in front of the page number. The numbering convention for the DS number is

�DSXXXXXA�, where �XXXXX� is the document number and �A� is the revision level of the

document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.

Select the Help menu, and then Topics to open a list of available on-line help files.

16-Bit Language Tools Libraries

DS51456E-page 2 © 2008 Microchip Technology Inc.

CONVENTIONS USED IN THIS GUIDE

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic Referenced books MPLAB®® IDE User�s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

�Save project before build�

Underlined, italic with right
angle bracket

A menu path File>Save

Bold A dialog button Click OK

A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, �A�

Italic A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mpasmwin [options]

file [options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,

var_name...]

Represents code supplied by
user

void main (void)

{ ...

}

Preface

© 2008 Microchip Technology Inc. DS51456E-page 3

RECOMMENDED READING

This documentation describes how to use 16-bit libraries. Other useful documents are
listed below. The following Microchip documents are available and recommended as
supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.

16-Bit Language Tools Getting Started (DS70094)

A guide to installing and working with the Microchip language tools for 16-bit devices.
Examples using the 16-bit simulator SIM30 (a component of MPLAB SIM) are
provided.

MPLAB® Assembler, Linker and Utilities for PIC24 MCUs and dsPIC® DSCs

User's Guide (DS51317)

A guide to using the 16-bit assembler, object linker, and various utilities, including the
16-bit archiver/librarian.

MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs User�s Guide (DS51284)

A guide to using the 16-bit C compiler. The 16-bit linker is used with this tool.

Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions
and features. Among these are:

� Individual and family data sheets

� Family reference manuals

� Programmer�s reference manuals

C Standards Information

American National Standard for Information Systems � Programming Language � C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

16-Bit Language Tools Libraries

DS51456E-page 4 © 2008 Microchip Technology Inc.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

� Product Support � Data sheets and errata, application notes and sample
programs, design resources, user�s guides and hardware support documents,
latest software releases and archived software

� General Technical Support � Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

� Business of Microchip � Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip�s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

� Compilers � The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB® C compilers; all MPLAB
assemblers (including MPASM� assembler); all MPLAB linkers (including
MPLINK� object linker); and all MPLAB librarians (including MPLIB� object
librarian).

� Emulators � The latest information on Microchip in-circuit emulators.These
include the MPLAB REAL ICE�, MPLAB ICE 2000 and MPLAB ICE 4000
in-circuit emulators

� In-Circuit Debuggers � The latest information on Microchip in-circuit debuggers.
These include the MPLAB ICD 2 in-circuit debugger and PICkit� 2 debug
express.

� MPLAB® IDE � The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

� Programmers � The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® II device programmers and the PICSTART®
Plus and PICkit 1 and 2 development programmers.

Preface

© 2008 Microchip Technology Inc. DS51456E-page 5

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

� Distributor or Representative

� Local Sales Office

� Field Application Engineer (FAE)

� Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

16-Bit Language Tools Libraries

DS51456E-page 6 © 2008 Microchip Technology Inc.

NOTES:

16-BIT LANGUAGE TOOLS
LIBRARIES

© 2008 Microchip Technology Inc. DS51456E-page 7

Chapter 1. Library Overview

1.1 INTRODUCTION

A library is a collection of functions grouped for reference and ease of linking. See the
�MPLAB® Assembler, Linker and Utilities for PIC24 MCUs and dsPIC® DSCs User's

Guide� (DS51317) for more information about making and using libraries.

1.1.1 Assembly Code Applications

Free versions of the 16-bit language tool libraries are available from the Microchip web
site. DSP and 16-bit peripheral libraries are provided with object files and source code.
A math library containing functions from the standard C header file <math.h> is
provided as an object file only. The complete standard C library is provided with the
MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30).

1.1.2 C Code Applications

The 16-bit language tool libraries are included in the lib subdirectory of the MPLAB C
Compiler for PIC24 MCUs and dsPIC® DSCs install directory, which is by default:

C:\Program Files\Microchip\MPLAB C30\lib

These libraries can be linked directly into an application with 16-bit linker.

1.1.3 Chapter Organization

This chapter is organized as follows:

� OMF-Specific Libraries/Start-up Modules

� Start-up Code

� DSP Library

� 16-Bit Peripheral Libraries

� Standard C Libraries with Math and Support Functions

� Fixed Point Math Functions

� Compiler Built-in Functions

16-Bit Language Tools Libraries

DS51456E-page 8 © 2008 Microchip Technology Inc.

1.2 OMF-SPECIFIC LIBRARIES/START-UP MODULES

Library files and start-up modules are specific to OMF (Object Module Format). An
OMF can be one of the following:

� COFF � This is the default.

� ELF � The debugging format used for ELF object files is DWARF 2.0.

There are two ways to select the OMF:

1. Set an environment variable called PIC30_OMF for all tools.

2. Select the OMF on the command line when invoking the tool, i.e., -omf=omf or
-momf=omf .

16-bit tools will first look for generic library files when building your application (no OMF
specification). If these cannot be found, the tools will look at your OMF specifications
and determine which library file to use.

As an example, if libdsp.a is not found and no environment variable or command-line
option is set, the file libdsp-coff.a will be used by default.

1.3 START-UP CODE

In order to initialize variables in data memory, the linker creates a data initialization
template. This template must be processed at start-up, before the application proper
takes control. For C programs, this function is performed by the start-up modules in
libpic30-coff.a (either crt0.o or crt1.o) or libpic30-elf.a (either crt0.eo or
crt1.eo). Assembly language programs can utilize these modules directly by linking
with the desired start-up module file. The source code for the start-up modules is pro-
vided in corresponding .s files.

The primary start-up module (crt0) initializes all variables (variables without initializers
are set to zero as required by the ANSI standard) except for variables in the persistent
data section. The alternate start-up module (crt1) performs no data initialization.

For more on start-up code, see the �MPLAB® Assembler, Linker and Utilities for PIC24

MCUs and dsPIC® DSCs User's Guide� (DS51317) and, for C applications, the
�MPLAB® C Compiler for PIC24 MCUs and dsPIC® DSCs User�s Guide� (DS51284).

1.4 DSP LIBRARY

The DSP library (libdsp-omf.a) provides a set of digital signal processing operations
to a program targeted for execution on a dsPIC30F digital signal controller (DSC). In
total, 49 functions are supported by the DSP Library.

Documentation for these libraries is provided in HTML Help files. Examples of use may
also provided. By default, the documentation is found in:

C:\Program Files\Microchip\MPLAB C30\docs\dsp_lib

1.5 16-BIT PERIPHERAL LIBRARIES

The 16-bit software and hardware peripheral libraries provide functions and macros for
setting up and controlling 16-bit peripherals. These libraries are processor-specific and
of the form libpDevice-omf.a, where Device is the 16-bit device number (e.g.,
libp30F6014-coff.a for the dsPIC30F6014 device) and omf is either coff or elf.

Documentation for these libraries is provided in HTML Help files. Examples of use are
also provided in each file. By default, the documentation is found in:

C:\Program Files\Microchip\MPLAB C30\docs\periph_lib

Library Overview

© 2008 Microchip Technology Inc. DS51456E-page 9

1.6 STANDARD C LIBRARIES WITH MATH AND SUPPORT FUNCTIONS

A complete set of ANSI-89 conforming libraries are provided. The standard C library
files are libc-omf.a (written by Dinkumware, an industry leader) and libm-omf.a
(math functions, written by Microchip).

Additionally, some 16-bit standard C library helper functions, and standard functions
that must be modified for use with 16-bit devices, are in libpic30-omf.a.

A typical C application will require these libraries. Documentation for these library
functions is contained in this manual.

1.7 FIXED POINT MATH FUNCTIONS

Fixed point math functions may be found in the library file libq-omf.a. Documentation
for these library functions is contained in this manual.

1.8 COMPILER BUILT-IN FUNCTIONS

The MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs contains built-in functions
that, to the developer, work like library functions. These functions are listed in the
�MPLAB® C Compiler for PIC24 MCUs and dsPIC® DSCs Users� Guide� (DS51284).

16-Bit Language Tools Libraries

DS51456E-page 10 © 2008 Microchip Technology Inc.

NOTES:

16-BIT LANGUAGE TOOLS
LIBRARIES

© 2008 Microchip Technology Inc. DS51456E-page 11

Chapter 2. Standard C Libraries

2.1 INTRODUCTION

Standard ANSI C library functions are contained in the file libc-omf.a, where omf will
be coff or elf depending upon the selected object module format.

2.1.1 Assembly Code Applications

A free version of the math functions library and header file is available from the
Microchip web site. No source code is available with this free version.

2.1.2 C Code Applications

The MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30)
install directory (c:\Program Files\Microchip\MPLAB C30) contains the following
subdirectories with library-related files:

� lib � standard C library files

� src\libm � source code for math library functions, batch file to rebuild the library

� support\h � header files for libraries

In addition, there is a file, ResourceGraphs.pdf, which contains diagrams of resources
used by each function, located in lib.

2.1.3 Chapter Organization

This chapter is organized as follows:

� Using the Standard C Libraries

� <assert.h> diagnostics

� <ctype.h> character handling

� <errno.h> errors

� <float.h> floating-point characteristics

� <limits.h> implementation-defined limits

� <locale.h> localization

� <setjmp.h> non-local jumps

� <signal.h> signal handling

� <stdarg.h> variable argument lists

� <stddef.h> common definitions

� <stdio.h> input and output

� <stdlib.h> utility functions

� <string.h> string functions

� <time.h> date and time functions

16-Bit Language Tools Libraries

DS51456E-page 12 © 2008 Microchip Technology Inc.

2.2 USING THE STANDARD C LIBRARIES

Building an application which utilizes the standard C libraries requires two types of files:
header files and library files.

2.2.1 Header Files

All standard C library entities are declared or defined in one or more standard headers
(See list in Section 2.1.3 �Chapter Organization�.) To make use of a library entity in
a program, write an include directive that names the relevant standard header.

The contents of a standard header is included by naming it in an include directive, as in:

#include <stdio.h> /* include I/O facilities */

The standard headers can be included in any order. Do not include a standard header
within a declaration. Do not define macros that have the same names as keywords
before including a standard header.

A standard header never includes another standard header.

2.2.2 Library Files

The archived library files contain all the individual object files for each library function.

When linking an application, the library file must be provided as an input to the linker
(using the --library or -l linker option) such that the functions used by the
application may be linked into the application.

A typical C application will require three library files: libc-omf.a, libm-omf.a, and
libpic30-omf.a. (See Section 1.2 �OMF-Specific Libraries/Start-up Modules� for
more on OMF-specific libraries.) These libraries will be included automatically if linking
is performed using the compiler.

Note: Some standard library functions require a heap. These include the standard
I/O functions that open files and the memory allocation functions. See the
�MPLAB® Assembler, Linker and Utilities for PIC24 MCUs and dsPIC®

DSCs User�s Guide� (DS51317) and �MPLAB® C Compiler for PIC24

MCUs and dsPIC® DSCs User�s Guide� (DS51284) for more information on
the heap.

Standard C Libraries

© 2008 Microchip Technology Inc. DS51456E-page 13

2.3 <ASSERT.H> DIAGNOSTICS

The header file assert.h consists of a single macro that is useful for debugging logic
errors in programs. By using the assert statement in critical locations where certain
conditions should be true, the logic of the program may be tested.

Assertion testing may be turned off without removing the code by defining NDEBUG
before including <assert.h>. If the macro NDEBUG is defined, assert() is ignored and
no code is generated.

assert

Description: If the expression is false, an assertion message is printed to stderr and
the program is aborted.

Include: <assert.h>

Prototype: void assert(int expression);

Argument: expression The expression to test.

Remarks: The expression evaluates to zero or non-zero. If zero, the assertion
fails, and a message is printed to stderr. The message includes the
source file name (__FILE__), the source line number (__LINE__),
the expression being evaluated and the message. The macro then calls
the function abort(). If the macro _VERBOSE_DEBUGGING is defined,
a message will be printed to stderr each time assert() is called.

Example: #include <assert.h> /* for assert */

int main(void)

{

 int a;

 a = 2 * 2;

 assert(a == 4); /* if true-nothing prints */

 assert(a == 6); /* if false-print message */

 /* and abort */

}

Output:

sampassert.c:9 a == 6 -- assertion failed

ABRT

with _VERBOSE_DEBUGGING defined:

sampassert.c:8 a == 4 -- OK

sampassert.c:9 a == 6 -- assertion failed

ABRT

16-Bit Language Tools Libraries

DS51456E-page 14 © 2008 Microchip Technology Inc.

2.4 <CTYPE.H> CHARACTER HANDLING

The header file ctype.h consists of functions that are useful for classifying and
mapping characters. Characters are interpreted according to the Standard C locale.

isalnum

Description: Test for an alphanumeric character.

Include: <ctype.h>

Prototype: int isalnum(int c);

Argument: c The character to test.

Return Value: Returns a non-zero integer value if the character is alphanumeric;
otherwise, returns a zero.

Remarks: Alphanumeric characters are included within the ranges A-Z, a-z or 0-9.

Example: #include <ctype.h> /* for isalnum */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = '3';

 if (isalnum(ch))

 printf("3 is an alphanumeric\n");

 else

 printf("3 is NOT an alphanumeric\n");

 ch = '#';

 if (isalnum(ch))

 printf("# is an alphanumeric\n");

 else

 printf("# is NOT an alphanumeric\n");

}

Output:

3 is an alphanumeric

is NOT an alphanumeric

isalpha

Description: Test for an alphabetic character.

Include: <ctype.h>

Prototype: int isalpha(int c);

Argument: c The character to test.

Return Value: Returns a non-zero integer value if the character is alphabetic;
otherwise, returns zero.

Remarks: Alphabetic characters are included within the ranges A-Z or a-z.

Standard C Libraries

© 2008 Microchip Technology Inc. DS51456E-page 15

Example: #include <ctype.h> /* for isalpha */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = 'B';

 if (isalpha(ch))

 printf("B is alphabetic\n");

 else

 printf("B is NOT alphabetic\n");

 ch = '#';

 if (isalpha(ch))

 printf("# is alphabetic\n");

 else

 printf("# is NOT alphabetic\n");

}

Output:

B is alphabetic

is NOT alphabetic

iscntrl

Description: Test for a control character.

Include: <ctype.h>

Prototype: int iscntrl(int c);

Argument: c character to test.

Return Value: Returns a non-zero integer value if the character is a control character;
otherwise, returns zero.

Remarks: A character is considered to be a control character if its ASCII value is
in the range 0x00 to 0x1F inclusive, or 0x7F.

Example: #include <ctype.h> /* for iscntrl */

#include <stdio.h> /* for printf */

int main(void)

{

 char ch;

 ch = 'B';

 if (iscntrl(ch))

 printf("B is a control character\n");

 else

 printf("B is NOT a control character\n");

 ch = '\t';

 if (iscntrl(ch))

 printf("A tab is a control character\n");

 else

 printf("A tab is NOT a control character\n");

}

Output:

B is NOT a control character

A tab is a control character

isalpha (Continued)

16-Bit Language Tools Libraries

DS51456E-page 16 © 2008 Microchip Technology Inc.

isdigit

Description: Test for a decimal digit.

Include: <ctype.h>

Prototype: int isdigit(int c);

Argument: c character to test.

Return Value: Returns a non-zero integer value if the character is a digit; otherwise,
returns zero.

Remarks: A character is considered to be a digit character if it is in the range of
�0�- �9�.

Example: #include <ctype.h> /* for isdigit */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = '3';

 if (isdigit(ch))

 printf("3 is a digit\n");

 else

 printf("3 is NOT a digit\n");

 ch = '#';

 if (isdigit(ch))

 printf("# is a digit\n");

 else

 printf("# is NOT a digit\n");

}

Output:

3 is a digit

is NOT a digit

isgraph

Description: Test for a graphical character.

Include: <ctype.h>

Prototype: int isgraph (int c);

Argument: c character to test

Return Value: Returns a non-zero integer value if the character is a graphical charac-
ter; otherwise, returns zero.

Remarks: A character is considered to be a graphical character if it is any print-
able character except a space.

Example: #include <ctype.h> /* for isgraph */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

Standard C Libraries

© 2008 Microchip Technology Inc. DS51456E-page 17

 ch = '3';

 if (isgraph(ch))

 printf("3 is a graphical character\n");

 else

 printf("3 is NOT a graphical character\n");

 ch = '#';

 if (isgraph(ch))

 printf("# is a graphical character\n");

 else

 printf("# is NOT a graphical character\n");

 ch = ' ';

 if (isgraph(ch))

 printf("a space is a graphical character\n");

 else

 printf("a space is NOT a graphical character\n");

}

Output:

3 is a graphical character

is a graphical character

a space is NOT a graphical character

islower

Description: Test for a lower case alphabetic character.

Include: <ctype.h>

Prototype: int islower (int c);

Argument: c character to test

Return Value: Returns a non-zero integer value if the character is a lower case alpha-
betic character; otherwise, returns zero.

Remarks: A character is considered to be a lower case alphabetic character if it is
in the range of �a�-�z�.

Example: #include <ctype.h> /* for islower */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = 'B';

 if (islower(ch))

 printf("B is lower case\n");

 else

 printf("B is NOT lower case\n");

 ch = 'b';

 if (islower(ch))

 printf("b is lower case\n");

 else

 printf("b is NOT lower case\n");

}

isgraph (Continued)

16-Bit Language Tools Libraries

DS51456E-page 18 © 2008 Microchip Technology Inc.

Output:

B is NOT lower case

b is lower case

isprint

Description: Test for a printable character (includes a space).

Include: <ctype.h>

Prototype: int isprint (int c);

Argument: c character to test

Return Value: Returns a non-zero integer value if the character is printable; other-
wise, returns zero.

Remarks: A character is considered to be a printable character if it is in the range
0x20 to 0x7e inclusive.

Example: #include <ctype.h> /* for isprint */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = '&';

 if (isprint(ch))

 printf("& is a printable character\n");

 else

 printf("& is NOT a printable character\n");

 ch = '\t';

 if (isprint(ch))

 printf("a tab is a printable character\n");

 else

 printf("a tab is NOT a printable character\n");

}

Output:

& is a printable character

a tab is NOT a printable character

ispunct

Description: Test for a punctuation character.

Include: <ctype.h>

Prototype: int ispunct (int c);

Argument: c character to test

Return Value: Returns a non-zero integer value if the character is a punctuation char-
acter; otherwise, returns zero.

Remarks: A character is considered to be a punctuation character if it is a print-
able character which is neither a space nor an alphanumeric character.
Punctuation characters consist of the following:
 ! " # $ % & ' () ; < = > ? @ [\] * + , - . / : ^ _ { | } ~

islower (Continued)

Standard C Libraries

© 2008 Microchip Technology Inc. DS51456E-page 19

Example: #include <ctype.h> /* for ispunct */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = '&';

 if (ispunct(ch))

 printf("& is a punctuation character\n");

 else

 printf("& is NOT a punctuation character\n");

 ch = '\t';

 if (ispunct(ch))

 printf("a tab is a punctuation character\n");

 else

 printf("a tab is NOT a punctuation character\n");

}

Output:

& is a punctuation character

a tab is NOT a punctuation character

isspace

Description: Test for a white-space character.

Include: <ctype.h>

Prototype: int isspace (int c);

Argument: c character to test

Return Value: Returns a non-zero integer value if the character is a white-space char-
acter; otherwise, returns zero.

Remarks: A character is considered to be a white-space character if it is one of
the following: space (' '), form feed ('\f'), newline ('\n'), carriage return
('\r'), horizontal tab ('\t'), or vertical tab ('\v').

Example: #include <ctype.h> /* for isspace */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = '&';

 if (isspace(ch))

 printf("& is a white-space character\n");

 else

 printf("& is NOT a white-space character\n");

 ch = '\t';

 if (isspace(ch))

 printf("a tab is a white-space character\n");

 else

 printf("a tab is NOT a white-space character\n");

}

ispunct (Continued)

16-Bit Language Tools Libraries

DS51456E-page 20 © 2008 Microchip Technology Inc.

Output:

& is NOT a white-space character

a tab is a white-space character

isupper

Description: Test for an upper case letter.

Include: <ctype.h>

Prototype: int isupper (int c);

Argument: c character to test

Return Value: Returns a non-zero integer value if the character is an upper case
alphabetic character; otherwise, returns zero.

Remarks: A character is considered to be an upper case alphabetic character if it
is in the range of �A�-�Z�.

Example: #include <ctype.h> /* for isupper */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = 'B';

 if (isupper(ch))

 printf("B is upper case\n");

 else

 printf("B is NOT upper case\n");

 ch = 'b';

 if (isupper(ch))

 printf("b is upper case\n");

 else

 printf("b is NOT upper case\n");

}

Output:

B is upper case

b is NOT upper case

isxdigit

Description: Test for a hexadecimal digit.

Include: <ctype.h>

Prototype: int isxdigit (int c);

Argument: c character to test

Return Value: Returns a non-zero integer value if the character is a hexadecimal digit;
otherwise, returns zero.

Remarks: A character is considered to be a hexadecimal digit character if it is in
the range of �0�-�9�, �A�-�F�, or �a�-�f�. Note: The list does not include the
leading 0x because 0x is the prefix for a hexadecimal number but is not
an actual hexadecimal digit.

isspace (Continued)

Standard C Libraries

© 2008 Microchip Technology Inc. DS51456E-page 21

Example: #include <ctype.h> /* for isxdigit */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = 'B';

 if (isxdigit(ch))

 printf("B is a hexadecimal digit\n");

 else

 printf("B is NOT a hexadecimal digit\n");

 ch = 't';

 if (isxdigit(ch))

 printf("t is a hexadecimal digit\n");

 else

 printf("t is NOT a hexadecimal digit\n");

}

Output:

B is a hexadecimal digit

t is NOT a hexadecimal digit

tolower

Description: Convert a character to a lower case alphabetical character.

Include: <ctype.h>

Prototype: int tolower (int c);

Argument: c The character to convert to lower case.

Return Value: Returns the corresponding lower case alphabetical character if the
argument was originally upper case; otherwise, returns the original
character.

Remarks: Only upper case alphabetical characters may be converted to lower
case.

Example: #include <ctype.h> /* for tolower */

#include <stdio.h> /* for printf */

int main(void)

{

 int ch;

 ch = 'B';

 printf("B changes to lower case %c\n",

 tolower(ch));

 ch = 'b';

 printf("b remains lower case %c\n",

 tolower(ch));

 ch = '@';

 printf("@ has no lower case, ");

 printf("so %c is returned\n", tolower(ch));

}

isxdigit (Continued)

	Contact us
	Preface
	Chapter 1. Library Overview
	1.1 Introduction
	1.2 OMF-Specific Libraries/Start-up Modules
	1.3 Start-up Code
	1.4 DSP Library
	1.5 16-Bit Peripheral Libraries
	1.6 Standard C Libraries with Math and Support Functions
	1.7 Fixed Point Math Functions
	1.8 Compiler Built-in Functions

	Chapter 2. Standard C Libraries
	2.1 Introduction
	2.2 Using the Standard C Libraries
	2.3 <assert.h> diagnostics
	2.4 <ctype.h> character handling

