
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

© 2007 Microchip Technology Inc. DS51686A

MPLAB C32

C COMPILER

USER’S GUIDE

DS51686A-page ii © 2007 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer’s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,

dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,

PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are

registered trademarks of Microchip Technology Incorporated

in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable

Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The

Embedded Control Solutions Company are registered

trademarks of Microchip Technology Incorporated in the

U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,

dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,

ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,

In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,

MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,

PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,

PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select

Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,

WiperLock and ZENA are trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2007, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:

� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® C32 C COMPILER

USER’S GUIDE

© 2007 Microchip Technology Inc. DS51686A-page iii

Table of Contents

Preface ... 1

Chapter 1. Language Specifics

1.1 Introduction ... 7

1.2 Highlights .. 7

1.3 Overview .. 7

1.4 File Naming Conventions ... 7

1.5 Data Storage .. 8

1.6 Predefined Macros ... 10

1.7 Attributes and Pragmas .. 11

1.8 Command Line Options .. 15

1.9 Compiling a Single File on the Command Line .. 40

1.10 Compiling Multiple Files on the Command Line ... 41

Chapter 2. Library Environment

2.1 Introduction ... 43

2.2 Highlights .. 43

2.3 Standard I/O ... 43

2.4 Weak Functions .. 43

2.5 “Helper” Header Files ... 44

2.6 Multilibs .. 44

Chapter 3. Interrupts

3.1 Introduction ... 47

3.2 Highlights .. 47

3.3 Specifying an Interrupt Handler Function ... 47

3.4 Associating a Handler Function with an Exception Vector 48

3.5 Exception Handlers .. 49

Chapter 4. Low Level Processor Control

4.1 Introduction ... 51

4.2 Highlights .. 51

4.3 Generic Processor Header File .. 51

4.4 Processor Support Header Files .. 51

4.5 Peripheral Library Functions .. 52

4.6 Special Function Register Access .. 53

4.7 CP0 Register Access ... 53

4.8 Configuration Bit Access .. 54

MPLAB® C32 C Compiler User’s Guide

DS51686A-page iv © 2007 Microchip Technology Inc.

Chapter 5. Compiler Runtime Environment

5.1 Introduction ... 57

5.2 Highlights .. 57

5.3 Register Conventions ... 57

5.4 Stack Usage ... 58

5.5 Heap Usage ... 59

5.6 Function Calling Convention .. 59

5.7 Startup and Initialization ... 61

5.8 Contents of the Default Linker Script .. 73

5.9 RAM Functions ... 85

Appendix A. Implementation Defined Behavior

A.1 Introduction .. 87

A.2 Highlights ... 87

A.3 Overview .. 87

A.4 Translation ... 87

A.5 Environment ... 88

A.6 Identifiers ... 89

A.7 Characters ... 89

A.8 Integers .. 90

A.9 Floating-Point ... 91

A.10 Arrays and Pointers ... 92

A.11 Hints ... 93

A.12 Structures, Unions, Enumerations, and Bit-fields 93

A.13 Qualifiers .. 94

A.14 Declarators ... 94

A.15 Statements ... 94

A.16 Pre-Processing Directives .. 94

A.17 Library Functions ... 96

A.18 Architecture .. 101

Appendix B. Open Source Licensing

B.1 Introduction .. 103

B.2 General Public License .. 103

B.3 BSD License .. 103

B.4 Sun Microsystems .. 104

Index ...105

Worldwide Sales and Service ...116

MPLAB® C32 C COMPILER

USER’S GUIDE

© 2007 Microchip Technology Inc. DS51686A-page 1

Preface

INTRODUCTION

This chapter contains general information that will be useful to know before using the

MPLAB C32 C Compiler. Items discussed in this chapter include:

� Document Layout

� Conventions Used in this Guide

� Recommended Reading

� The Microchip Web Site

� Development Systems Customer Change Notification Service

� Customer Support

� Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MPLAB C32 C Compiler as a development

tool to emulate and debug firmware on a target board. The document layout is as

follows:

� Chapter 1. Language Specifics – discusses command line usage of the MPLAB

C32 C compiler, attributes, pragmas, and data representation

� Chapter 2. Library Environment – discusses using the MPLAB C32 C libraries

� Chapter 3. Interrupts – presents an overview of interrupt processing

� Chapter 4. Low Level Processor Control – discusses access to the low level

registers and configuration of the PIC32MX devices

� Chapter 5. Compiler Runtime Environment – discusses the MPLAB C32 C

compiler runtime environment

� Appendix A. Implementation Defined Behavior – discusses the choices for

implementation defined behavior in MPLAB C32 C compiler

� Appendix B. Open Source Licensing – gives a summary of the open source

licenses used for portions of the MPLAB C32 C compiler package

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and

documentation are constantly evolving to meet customer needs, so some actual dialogs

and/or tool descriptions may differ from those in this document. Please refer to our web site

(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each

page, in front of the page number. The numbering convention for the DS number is

“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the

document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.

Select the Help menu, and then Topics to open a list of available on-line help files.

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 2 © 2007 Microchip Technology Inc.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or

dialog

“Save project before build”

Underlined, italic text with

right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N‘Rnnnn A number in verilog format,

where N is the total number of

digits, R is the radix and n is a

digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be

any valid filename

Square brackets [] Optional arguments mcc18 [options] file

[options]

Curly brackets and pipe

character: { | }

Choice of mutually exclusive

arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by

user

void main (void)
{ ...
}

Preface

© 2007 Microchip Technology Inc. DS51686A-page 3

RECOMMENDED READING

This user's guide describes how to use MPLAB C32 C Compiler. Other useful

documents are listed below. The following Microchip documents are available and

recommended as supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML

files) included with the software.

Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions

and features. Among these are:

� Individual and family data sheets

� Family reference manuals

� Programmer’s reference manuals

MPLAB® C32 C Compiler Libraries (DS51685)

Reference guide for MPLAB C32 libraries and precompiled object files. Lists all library

functions provided with the MPLAB C32 C compiler with detailed descriptions of their

use.

PIC32MX Configuration Settings

Lists the Configuration Bit Settings for the Microchip PIC32MS devices supported by

the MPLAB C32 C compiler’s #pragma config.

C Standards Information

American National Standard for Information Systems – Programming Language – C.

American National Standards Institute (ANSI), 11 West 42nd. Street, New York,

New York, 10036.

This standard specifies the form and establishes the interpretation of programs

expressed in the programming language C. Its purpose is to promote portability,

reliability, maintainability and efficient execution of C language programs on a

variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,

Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second

Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,

Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology

Publishing, Eagle Rock, Virginia 24085.

GCC Documents

http://gcc.gnu.org/onlinedocs/

http://sourceware.org/binutils/

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 4 © 2007 Microchip Technology Inc.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web

site is used as a means to make files and information easily available to customers.

Accessible by using your favorite Internet browser, the web site contains the following

information:

� Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,

latest software releases and archived software

� General Technical Support – Frequently Asked Questions (FAQs), technical

support requests, online discussion groups, Microchip consultant program

member listing

� Business of Microchip – Product selector and ordering guides, latest Microchip

press releases, listing of seminars and events, listings of Microchip sales offices,

distributors and factory representatives

Preface

© 2007 Microchip Technology Inc. DS51686A-page 5

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip

products. Subscribers will receive e-mail notification whenever there are changes,

updates, revisions or errata related to a specified product family or development tool of

interest.

To register, access the Microchip web site at www.microchip.com, click on Customer

Change Notification and follow the registration instructions.

The Development Systems product group categories are:

� Compilers – The latest information on Microchip C compilers and other language

tools. These include the MPLAB C18, MPLAB C30 and MPLAB C32 C compilers;

MPASM™ and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30

object linkers; and MPLIB™ and MPLAB LIB30 object librarians.

� Emulators – The latest information on Microchip in-circuit emulators. This

includes the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators.

� In-Circuit Debuggers – The latest information on the Microchip in-circuit

debuggers. These include MPLAB ICD 2 and PICkit™ 2.

� MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®

Integrated Development Environment for development systems tools. This list is

focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and

MPLAB SIM simulator, as well as general editing and debugging features.

� Programmers – The latest information on Microchip programmers. These include

the MPLAB PM3 device programmer and the PICSTART® Plus, PICkit™ 1 and

PICkit™ 2 development programmers.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

� Distributor or Representative

� Local Sales Office

� Field Application Engineer (FAE)

� Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of

sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision A (October 2007)

� Initial Release of this document.

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 6 © 2007 Microchip Technology Inc.

NOTES:

MPLAB® C32 C COMPILER

USER’S GUIDE

© 2007 Microchip Technology Inc. DS51686A-page 7

Chapter 1. Language Specifics

1.1 INTRODUCTION

This chapter discusses command line usage of the MPLAB C32 C compiler, attributes,

pragmas and data representation.

1.2 HIGHLIGHTS

Items discussed in this chapter are:

� Overview

� File Naming Conventions

� Data Storage

� Predefined Macros

� Attributes and Pragmas

� Command Line Options

� Compiling a Single File on the Command Line

� Compiling Multiple Files on the Command Line

1.3 OVERVIEW

The compilation driver program (pic32-gcc) compiles, assembles and links C and

assembly language modules and library archives. Most of the compiler command line

options are common to all implementations of the GCC toolset. A few are specific to

the MPLAB C32 C compiler.

The basic form of the compiler command line is:

pic32-gcc [options] files

The available options are described in Section 1.8 “Command Line Options”.

For example, to compile, assemble and link the C source file hello.c, creating the

absolute executable hello.out.

pic32-gcc -o hello.out hello.c

1.4 FILE NAMING CONVENTIONS

The compilation driver recognizes the following file extensions, which are case

sensitive.

Note: Command line options and file name extensions are case sensitive.

TABLE 1-1: FILE NAMES

Extensions Definition

file.c A C source file that must be preprocessed.

file.h A header file (not to be compiled or linked).

file.i A C source file that has already been pre-processed.

file.o An object file.

file.s An assembly language source file.

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 8 © 2007 Microchip Technology Inc.

1.5 DATA STORAGE

1.5.1 Storage Endianness

MPLAB C32 C compiler stores multi-byte values in little-endian format. That is, the

least significant byte is stored at the lowest address.

For example, the 32-bit value 0x12345678 would be stored at address 0x100 as:

1.5.2 Integer Representation

Integer values in MPLAB C32 C compiler are represented in 2's complement and vary

in size from 8 to 64 bits. These values are available in compiled code via limits.h.

1.5.3 Signed and Unsigned Character Types

By default, values of type plain char are signed values. This behavior is

implementation-defined by the C standard, and some environments1 define a plain

char value to be unsigned. The command line option -funsigned-char can be used

to set the default type to unsigned for a given translation unit.

1.5.4 Floating-Point Representation

MPLAB C32 C compiler uses the IEEE-754 floating-point format. Detail regarding the

implementation limits is available to a translation unit in float.h.

1.5.5 Pointers

Pointers in MPLAB C32 C compiler are all 32 bits in size.

file.S An assembly language source file that must be preprocessed.

other A file to be passed to the linker.

TABLE 1-1: FILE NAMES (CONTINUED)

Extensions Definition

Address 0x100 0x101 0x102 0x103

Data 0x78 0x56 0x34 0x12

Type Bits Min Max

char, signed char 8 -128 127

unsigned char 8 0 255

short, signed short 16 -32768 32767

unsigned short 16 0 65535

int, signed int, long, signed long 32 -231 231-1

unsigned int, unsigned long 32 0 232-1

long long, signed long long 64 -263 263-1

unsigned long long 64 0 264-1

1. Notably, PowerPC and ARM

Type Bits

float 32

double 64

long double 64

Language Specifics

© 2007 Microchip Technology Inc. DS51686A-page 9

1.5.6 limits.h

The limits.h header file defines the ranges of values which can be represented by

the integer types.

Macro name Value Description

CHAR_BIT 8 The size, in bits, of the smallest non-bitfield

object.

SCHAR_MIN -128 The minimum value possible for an object

of type signed char.

SCHAR_MAX 127 The maximum value possible for an object

of type signed char.

UCHAR_MAX 255 The maximum value possible for an object

of type unsigned char.

CHAR_MIN -128 (or 0, see

Signed and Unsigned

Character Types)

The minimum value possible for an object

of type char.

CHAR_MAX 127 (or 255, see

Signed and Unsigned

Character Types)

The maximum value possible for an object

of type char.

MB_LEN_MAX 16 The maximum length of multibyte character

in any locale.

SHRT_MIN -32768 The minimum value possible for an object

of type short int.

SHRT_MAX 32767 The maximum value possible for an object

of type short int.

USHRT_MAX 65535 The maximum value possible for an object

of type unsigned short int.

INT_MIN -231 The minimum value possible for an object

of type int.

INT_MAX 231-1 The maximum value possible for an object

of type int.

UINT_MAX 232-1 The maximum value possible for an object

of type unsigned int.

LONG_MIN -231 The minimum value possible for an object

of type long.

LONG_MAX 231-1 The maximum value possible for an object

of type long.

ULONG_MAX 232-1 The maximum value possible for an object

of type unsigned long.

LLONG_MIN -263 The minimum value possible for an object

of type long long.

LLONG_MAX 263-1 The maximum value possible for an object

of type long long.

ULLONG_MAX 264-1 The maximum value possible for an object

of type unsigned long long.

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 10 © 2007 Microchip Technology Inc.

1.6 PREDEFINED MACROS

1.6.1 MPLAB C32 C Compiler Macros

MPLAB C32 C compiler defines a number of macros, most with the prefix “_MCHP_,”

which characterize the various target specific options, the target processor and other

aspects of the host environment.

1.6.2 SDE Compatibility Macros

The MIPS® SDE (Software Development Environment) defines a number of macros,

most with the prefix “_MIPS_,” which characterize various target specific options, some

determined by command line options (e.g., -mint64). Where applicable, these

macros will be defined by the MPLAB C32 C compiler in order to ease porting

applications and middleware from the SDE to MPLAB C32 C compiler.

_MCHP_SZINT 32 or 64, depending on command line options

to set the size of an integer (-mint32
-mint64).

_MCHP_SZLONG 32 or 64, depending on command line options

to set the size of an integer (-mlong32
-mlong64).

_MCHP_SZPTR 32 always since all pointers are 32 bits.

__mchp_no_float Defined if -mno-float specified.

__NO_FLOAT Defined if -mno-float specified.

__SOFT_FLOAT Defined if -mno-float not specified.

Indicates that floating-point is supported via

library calls.

__PIC__
__pic__

The translation unit is being compiled for

position independent code.

__PIC32MX
__PIC32MX__

Always defined.

PIC32MX Defined if -ansi is not specified.

__LANGUAGE_ASSEMBLY
__LANGUAGE_ASSEMBLY__
_LANGUAGE_ASSEMBLY

Defined if compiling a pre-processed

assembly file (.S files).

LANGUAGE_ASSEMBLY Defined if compiling a pre-processed

assembly file (.S files) and -ansi is not

specified.

__LANGUAGE_C
__LANGUAGE_C__
_LANGUAGE_C

Defined if compiling a C file.

LANGUAGE_C Defined if compiling a C file and -ansi is not

specified.

__processor__ Where “processor” is the capitalized argument

to the -mprocessor option. E.g.,

-mprocessor=32mx12f3456 will define

__32MX12F3456__.

_MIPS_SZINT 32 or 64, depending on command line options

to set the size of an integer (-mint32
-mint64).

_MIPS_SZLONG 32 or 64, depending on command line options

to set the size of an integer (-mlong32
-mlong64).

_MIPS_SZPTR 32 always since all pointers are 32 bits.

__mips_no_float Defined if -mno-float specified.

Language Specifics

© 2007 Microchip Technology Inc. DS51686A-page 11

1.7 ATTRIBUTES AND PRAGMAS

1.7.1 Function Attributes

always_inline

If the function is declared inline, always inline the function, even if no optimization

level was specified.

longcall

Always invoke the function by first loading its address into a register and then using the

contents of that register. This allows calling a function located beyond the 28 bit

addressing range of the direct call instruction.

far

Functionally equivalent to longcall.

near

Always invoke the function with an absolute call instruction, even when the

-mlong-calls command line option is specified.

mips16

Generate code for the function in the MIPS16 instruction set.

nomips16

Always generate code for the function in the MIPS32 instruction set, even when

compiling the translation unit with the -mips16 command line option.

interrupt

Generate prologue and epilogue code for the function as an interrupt handler function.

See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.

vector

Generate a branch instruction at the indicated exception vector which targets the

function. See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.

__mips__
_mips
_MIPS_ARCH_PIC32MX
_MIPS_TUNE_PIC32MX
_R3000
__R3000
__R3000__
__mips_soft_float
__MIPSEL
__MIPSEL__
_MIPSEL

Always defined.

R3000
MIPSEL

Defined if -ansi is not specified.

_mips_fpr Defined as 32.

__mips16
__mips16e

Defined if -mips16 or -mips16e specified.

__mips Defined as 32.

__mips_isa_rev Defined as 2.

_MIPS_ISA Defined as _MIPS_ISA_MIPS32.

__mips_single_float Defined if -msingle-float specified.

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 12 © 2007 Microchip Technology Inc.

at_vector

Place the body of the function at the indicated exception vector address. See Chapter

3. “Interrupts” and Section 3.5 “Exception Handlers”.

naked

Generate no prologue or epilogue code for the function.

section (“name”)

Place the function into the named section.

For example,

void __attribute__ ((section (“.wilma”))) baz () {return;}

Function baz will be placed in section .wilma.

The -ffunction-sections command line option has no effect on functions defined

with a section attribute.

unique_section

Place the function in a uniquely named section, just as if -ffunction-sections had

been specified. If the function also has a section attribute, use that section name as

the prefix for generating the unique section name.

For example,

void __attribute__ ((section (“.fred”), unique_section) foo (void) {return;}

Function foo will be placed in section .fred.foo.

noreturn

Indicate to the compiler that the function will never return. In some situations, this can

allow the compiler to generate more efficient code in the calling function since

optimizations can be performed without regard to behavior if the function ever did

return. Functions declared as noreturn should always have a return type of void.

noinline

The function will never be considered for inlining.

pure

If a function has no side effects other than its return value, and the return value is

dependent only on parameters and/or (nonvolatile) global variables, the compiler can

perform more aggressive optimizations around invocations of that function. Such

functions can be indicated with the pure attribute.

const

If a pure function determines its return value exclusively from its parameters (i.e., does

not examine any global variables), it may be declared const, allowing for even more

aggressive optimization. Note that a function which de-references a pointer argument

is not const since the pointer de-reference uses a value which is not an parameter,

even though the pointer itself is a parameter.

format (type, format_index, first_to_check)

The format attribute indicates that the function takes a printf, scanf, strftime,

or strfmon style format string and arguments and that the compiler should type check

those arguments against the format string, just as it does for the standard library

functions.

The type parameter is one of printf, scanf, strftime or strfmon (optionally with

surrounding double underscores, e.g., __printf__) and determines how the format

string will be interpreted.

The format_index parameter specifies which function parameter is the format string.

Function parameters are numbered from the left-most parameter, starting from 1.

Language Specifics

© 2007 Microchip Technology Inc. DS51686A-page 13

The first_to_check parameter specifies which parameter is the first to check

against the format string. If first_to_check is zero, type checking is not performed

and the compiler only checks the format string for consistency (e.g., vfprintf).

format_arg (index)

The format_arg attribute specifies that a function manipulates a printf style format

string and that the compiler should check the format string for consistency. The function

attribute which is a format string is identified by index.

nonnull (index, ...)

Indicate to the compiler that one or more pointer arguments to the function must be

non-null. If the compiler determines that a null pointer is passed as a value to a non-null

argument, and the -Wnonnull command line option was specified, a warning

diagnostic is issued.

If no arguments are give to the nonnull attribute, all pointer arguments of the function

are marked as non-null.

unused

Indicate to the compiler that the function may not be used. The compiler will not issue

a warning for this function if it is not used.

used

Indicate to the compiler that the function is always used and code must be generated

for the function even if the compiler cannot see a reference to the function. For

example, if inline assembly is the only reference to a static function.

deprecated

When a function specified as deprecated is used, a warning is generated.

warn_unused_result

A warning will be issued if the return value of the indicated function is unused by a

caller.

weak

A weak symbol indicates that if another version of the same symbol is available, that

version should be used instead. For example, this is useful when a library function is

implemented such that it can be overridden by a user written function.

malloc

Any non-null pointer return value from the indicated function will not alias any other

pointer which is live at the point when the function returns. This allows the compiler to

improve optimization.

alias (“symbol”)

Indicates that the function is an alias for another symbol. For example,

void foo (void) { /* stuff */ }
void bar (void) __attribute__ ((alias(“foo”)));

Symbol bar is considered to be an alias for symbol foo.

1.7.2 Variable Attributes

aligned (n)

The attributed variable will aligned on the next n byte boundary.

The aligned attribute can also be used on a structure member. Such a member will

be aligned to the indicated boundary within the structure.

If the alignment value n is omitted, the alignment of the variable is set 8 (the largest

alignment value for a basic data type).

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 14 © 2007 Microchip Technology Inc.

Note that the aligned attribute is used to increase the alignment of a variable, not

reduce it. To decrease the alignment value of a variable, use the packed attribute.

cleanup (function)

Indicate a function to call when the attributed automatic function scope variable goes

out of scope.

The indicated function should take a single parameter, a pointer to a type compatible

with the attributed variable, and have void return type.

deprecated

When a variable specified as deprecated is used, a warning is generated.

packed

The attributed variable or structure member will have the smallest possible alignment.

That is, no alignment padding storage will be allocated for the declaration. Used in

combination with the aligned attribute, packed can be used to set an arbitrary

alignment restriction, greater or lesser than the default alignment for the type of the

variable or structure member.

section (“name”)

Place the function into the named section.

For example,

unsigned int dan __attribute__ ((section (“.quixote”)))

Variable dan will be placed in section .quixote.

The -fdata-sections command line option has no effect on variables defined with

a section attribute unless unique_section is also specified.

unique_section

Place the variable in a uniquely named section, just as if -fdata-sections had been

specified. If the variable also has a section attribute, use that section name as the

prefix for generating the unique section name.

For example,

int tin __attribute__ ((section (“.ofcatfood”), unique_section)

Variable tin will be placed in section .ofcatfood.

transparent_union

When a function parameter of union type has the transparent_union attribute

attached, corresponding arguments are passed as if the type were the type of the first

member of the union.

unused

Indicate to the compiler that the variable may not be used. The compiler will not issue

a warning for this variable if it is not used.

weak

A weak symbol indicates that if another version of the same symbol is available, that

version should be used instead.

1.7.3 Pragmas

#pragma interrupt

Mark a function as an interrupt handler. The prologue and epilogue code for the

function will perform more extensive context preservation. See Chapter

3. “Interrupts” and Section 3.5 “Exception Handlers”.

#pragma vector

Language Specifics

© 2007 Microchip Technology Inc. DS51686A-page 15

Generate a branch instruction at the indicated exception vector which targets the

function. See Chapter 3. “Interrupts” and Section 3.5 “Exception Handlers”.

#pragma config

The #pragma config directive specifies the processor-specific configuration settings

(i.e., configuration bits) to be used by the application. See Chapter 4. “Low Level

Processor Control”.

1.8 COMMAND LINE OPTIONS

MPLAB C32 C compiler has many options for controlling compilation, all of which are

case sensitive.

� Options Specific to PIC32MX Devices

� Options for Controlling the Kind of Output

� Options for Controlling the C Dialect

� Options for Controlling Warnings and Errors

� Options for Debugging

� Options for Controlling Optimization

� Options for Controlling the Preprocessor

� Options for Assembling

� Options for Linking

� Options for Directory Search

� Options for Code Generation Conventions

1.8.1 Options Specific to PIC32MX Devices

TABLE 1-2: PIC32MX DEVICE-SPECIFIC OPTIONS

Option Definition

-mprocessor Selects the device for which to compile

(e.g., -mprocessor=32MX360F512L)

-mips16
-mno-mips16

Generate (do not generate) MIPS16 code.

-mno-float Don’t use floating-point libraries.

-msingle-float Assume that the floating-point coprocessor only

supports single-precision operations.

-mdouble-float Assume that the floating-point coprocessor supports

double-precision operations. This is the default.

-mlong64 Force long types to be 64 bits wide. See -mlong32

for an explanation of the default and the way that the

pointer size is determined.

-mlong32 Force long, int, and pointer types to be 32 bits wide.

The default size of ints, longs and pointers is 32

bits.

-G num Put global and static items less than or equal to num

bytes into the small data or bss section instead of the

normal data or bss section. This allows the data to be

accessed using a single instruction.

All modules should be compiled with the same -G num

value.

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 16 © 2007 Microchip Technology Inc.

-membedded-data
-mno-embedded-data

Allocate variables to the read-only data section first if

possible, then next in the small data section if possible,

otherwise in data. This gives slightly slower code than

the default, but reduces the amount of RAM required

when executing, and thus may be preferred for some

embedded systems.

-muninit-const-in-rodata
-mno-uninit-const-in-rodata

Put uninitialized const variables in the read-only data

section. This option is only meaningful in conjunction

with -membedded-data.

-mcheck-zero-division
-mno-check-zero-division

Trap (do not trap) on integer division by zero. The

default is -mcheck-zero-division.

-mmemcpy
-mno-memcpy

Force (do not force) the use of memcpy() for

non-trivial block moves. The default is -mno-memcpy,

which allows GCC to inline most constant-sized

copies.

-mlong-calls
-mno-long-calls

Disable (do not disable) use of the jal instruction.

Calling functions using jal is more efficient but

requires the caller and callee to be in the same 256

megabyte segment.

This option has no effect on abicalls code. The default

is -mno-long-calls.

-mno-peripheral-libs Do not use the standard peripheral libraries when

linking.

TABLE 1-2: PIC32MX DEVICE-SPECIFIC OPTIONS (CONTINUED)

Option Definition

Language Specifics

© 2007 Microchip Technology Inc. DS51686A-page 17

1.8.2 Options for Controlling the Kind of Output

The following options control the kind of output produced by the compiler.

TABLE 1-3: KIND-OF-OUTPUT CONTROL OPTIONS

Option Definition

-c Compile or assemble the source files, but do not link. The default file

extension is .o.

-E Stop after the preprocessing stage, i.e., before running the compiler

proper. The default output file is stdout.

-o file Place the output in file.

-S Stop after compilation proper (i.e., before invoking the assembler). The

default output file extension is .s.

-v Print the commands executed during each stage of compilation.

-x You can specify the input language explicitly with the -x option:

-x language
Specify explicitly the language for the following input files (rather than

letting the compiler choose a default based on the file name suffix).

This option applies to all following input files until the next -x option.

The following values are supported by MPLAB C32 C compiler:

c
c-header
cpp-output
assembler
assembler-with-cpp

-x none
Turn off any specification of a language, so that subsequent files are

handled according to their file name suffixes. This is the default

behavior but is needed if another -x option has been used. For

example:

pic32-gcc -x assembler foo.asm bar.asm -x none
main.c mabonga.s

Without the -x none, the compiler assumes all the input files are for

the assembler.

--help Print a description of the command line options.

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 18 © 2007 Microchip Technology Inc.

1.8.3 Options for Controlling the C Dialect

The following options define the kind of C dialect used by the compiler.

TABLE 1-4: C DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI-standard C programs.

-aux-info filename Output to the given filename prototyped declarations for all

functions declared and/or defined in a translation unit,

including those in header files. This option is silently

ignored in any language other than C. Besides

declarations, the file indicates, in comments, the origin of

each declaration (source file and line), whether the

declaration was implicit, prototyped or unprototyped (I, N

for new or O for old, respectively, in the first character after

the line number and the colon), and whether it came from a

declaration or a definition (C or F, respectively, in the

following character). In the case of function definitions, a

K&R-style list of arguments followed by their declarations is

also provided, inside comments, after the declaration.

-ffreestanding Assert that compilation takes place in a freestanding

environment. This implies -fno-builtin. A freestanding

environment is one in which the standard library may not

exist, and program startup may not necessarily be at main.

The most obvious example is an OS kernel. This is

equivalent to -fno-hosted.

-fno-asm Do not recognize asm, inline or typeof as a keyword,

so that code can use these words as identifiers. You can

use the keywords __asm__, __inline__ and

__typeof__ instead.

-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don't recognize built-in functions that do not begin with

__builtin_ as prefix.

-fsigned-char Let the type char be signed, like signed char.

(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit field is signed or

unsigned, when the declaration does not use either signed

or unsigned. By default, such a bit field is signed, unless

-traditional is used, in which case bit fields are always

unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.

-fwritable-strings Store strings in the writable data segment and don’t make

them unique.

Language Specifics

© 2007 Microchip Technology Inc. DS51686A-page 19

1.8.4 Options for Controlling Warnings and Errors

Warnings are diagnostic messages that report constructions that are not inherently

erroneous but that are risky or suggest there may have been an error.

You can request many specific warnings with options beginning -W, for example,

-Wimplicit, to request warnings on implicit declarations. Each of these specific

warning options also has a negative form beginning -Wno- to turn off warnings, for

example, -Wno-implicit. This manual lists only one of the two forms, whichever is

not the default.

The following options control the amount and kinds of warnings produced by the

MPLAB C32 C Compiler.

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL

Option Definition

-fsyntax-only Check the code for syntax, but don’t do anything beyond that.

-pedantic Issue all the warnings demanded by strict ANSI C. Reject all

programs that use forbidden extensions.

-pedantic-errors Like -pedantic, except that errors are produced rather than

warnings.

-w Inhibit all warning messages.

-Wall All of the -W options listed in this table combined. This

enables all the warnings about constructions that some users

consider questionable, and that are easy to avoid (or modify

to prevent the warning), even in conjunction with macros.

-Wchar-subscripts Warn if an array subscript has type char.

-Wcomment
-Wcomments

Warn whenever a comment-start sequence /* appears in a

/* comment, or whenever a Backslash-Newline appears in a

// comment.

-Wdiv-by-zero Warn about compile-time integer division by zero. To inhibit

the warning messages, use -Wno-div-by-zero.

Floating-point division by zero is not warned about, as it can

be a legitimate way of obtaining infinities and NaNs.

(This is the default.)

-Werror-implicit-
 function-declaration

Give an error whenever a function is used before being

declared.

-Wformat Check calls to printf and scanf, etc., to make sure that

the arguments supplied have types appropriate to the format

string specified.

-Wimplicit Equivalent to specifying both -Wimplicit-int and

-Wimplicit-function-declaration.

-Wimplicit-function-
 declaration

Give a warning whenever a function is used before being

declared.

-Wimplicit-int Warn when a declaration does not specify a type.

-Wmain Warn if the type of main is suspicious. main should be a

function with external linkage, returning int, taking either

zero, two or three arguments of appropriate types.

-Wmissing-braces Warn if an aggregate or union initializer is not fully bracketed.

In the following example, the initializer for a is not fully

bracketed, but that for b is fully bracketed.

int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

MPLAB® C32 C Compiler User’s Guide

DS51686A-page 20 © 2007 Microchip Technology Inc.

-Wmultichar
-Wno-multichar

Warn if a multi-character character constant is used.

Usually, such constants are typographical errors. Since they

have implementation-defined values, they should not be

used in portable code. The following example illustrates the

use of a multi-character character constant:

char
xx(void)
{
return('xx');
}

-Wparentheses Warn if parentheses are omitted in certain contexts, such as

when there is an assignment in a context where a truth value

is expected, or when operators are nested whose

precedence people often find confusing.

-Wreturn-type Warn whenever a function is defined with a return-type that

defaults to int. Also warn about any return statement with

no return-value in a function whose return-type is not void.

-Wsequence-point Warn about code that may have undefined semantics

because of violations of sequence point rules in the C

standard.

The C standard defines the order in which expressions in a C

program are evaluated in terms of sequence points, which

represent a partial ordering between the execution of parts of

the program: those executed before the sequence point and

those executed after it. These occur after the evaluation of a

full expression (one which is not part of a larger expression),

after the evaluation of the first operand of a &&, ||, ? : or ,

(comma) operator, before a function is called (but after the

evaluation of its arguments and the expression denoting the

called function), and in certain other places. Other than as

expressed by the sequence point rules, the order of

evaluation of subexpressions of an expression is not

specified. All these rules describe only a partial order rather

than a total order, since, for example, if two functions are

called within one expression with no sequence point between

them, the order in which the functions are called is not

specified. However, the standards committee has ruled that

function calls do not overlap.

It is not specified, when, between sequence points

modifications to the values of objects take effect. Programs

whose behavior depends on this have undefined behavior,

The C standard specifies that “Between the previous and

next sequence point, an object shall have its stored value

modified, at most once, by the evaluation of an expression.

Furthermore, the prior value shall be read only to determine

the value to be stored.” If a program breaks these rules, the

results on any particular implementation are entirely

unpredictable.

Examples of code with undefined behavior are a = a++;,

a[n] = b[n++] and a[i++] = i;. Some more

complicated cases are not diagnosed by this option, and it

may give an occasional false positive result, but in general it

has been found fairly effective at detecting this sort of

problem in programs.

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option Definition

Language Specifics

© 2007 Microchip Technology Inc. DS51686A-page 21

-Wswitch Warn whenever a switch statement has an index of

enumeral type and lacks a case for one or more of the named

codes of that enumeration. (The presence of a default label

prevents this warning.) case labels outside the enumeration

range also provoke warnings when this option is used.

-Wsystem-headers Print warning messages for constructs found in system

header files. Warnings from system headers are normally

suppressed, on the assumption that they usually do not

indicate real problems and would only make the compiler

output harder to read. Using this command line option tells

MPLAB C32 C compiler to emit warnings from system

headers as if they occurred in user code. However, note that

using -Wall in conjunction with this option does not warn

about unknown pragmas in system headers. For that,

-Wunknown-pragmas must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are

enabled).

-Wuninitialized Warn if an automatic variable is used without first being

initialized.

These warnings are possible only when optimization is

enabled, because they require data flow information that is

computed only when optimizing.

These warnings occur only for variables that are candidates

for register allocation. Therefore, they do not occur for a

variable that is declared volatile, or whose address is

taken, or whose size is other than 1, 2, 4 or 8 bytes. Also,

they do not occur for structures, unions or arrays, even when

they are in registers.

Note that there may be no warning about a variable that is

used only to compute a value that itself is never used,

because such computations may be deleted by data flow

analysis before the warnings are printed.

-Wunknown-pragmas Warn when a #pragma directive is encountered which is not

understood by MPLAB C32 C compiler. If this command line

option is used, warnings are even be issued for unknown

pragmas in system header files. This is not the case if the

warnings were only enabled by the -Wall command line

option.

-Wunused Warn whenever a variable is unused aside from its

declaration, whenever a function is declared static but never

defined, whenever a label is declared but not used, and

whenever a statement computes a result that is explicitly not

used.

In order to get a warning about an unused function

parameter, both -W and -Wunused must be specified.

Casting an expression to void suppresses this warning for an

expression. Similarly, the unused attribute suppresses this

warning for unused variables, parameters and labels.

-Wunused-function Warn whenever a static function is declared but not defined

or a non-inline static function is unused.

-Wunused-label Warn whenever a label is declared but not used. To suppress

this warning, use the unused attribute.

TABLE 1-5: WARNING AND ERROR OPTIONS IMPLIED BY
-WALL (CONTINUED)

Option Definition

	Contact us
	Introduction
	Document Layout
	Conventions Used in this Guide
	Recommended Reading
	The Microchip Web Site
	Development Systems Customer Change Notification Service
	Customer Support
	Document Revision History
	Chapter 1. Language Specifics
	1.1 Introduction
	1.2 Highlights
	1.3 Overview
	1.4 File Naming Conventions
	1.5 Data Storage
	1.6 Predefined Macros
	1.7 Attributes and Pragmas
	1.7.1 Function Attributes

	1.8 Command Line Options

