
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 2012 Microchip Technology Inc. DS52053B

MPLAB® XC8 C Compiler

User’s Guide

DS52053B-page 2  2012 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer’s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,

KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,

PIC32 logo, rfPIC and UNI/O are registered trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,

MXDEV, MXLAB, SEEVAL and The Embedded Control

Solutions Company are registered trademarks of Microchip

Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,

chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,

dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,

FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,

Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,

MPLINK, mTouch, Omniscient Code Generation, PICC,

PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,

rfLAB, Select Mode, Total Endurance, TSHARC,

UniWinDriver, WiperLock and ZENA are trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2012, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-62076-375-9

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

== ISO/TS 16949 ==

 2012 Microchip Technology Inc. DS52053B-page 3

MPLAB® XC8 C COMPILER
USER’S GUIDE

Table of Contents

Preface ... 7

Chapter 1. Compiler Overview

1.1 Introduction ... 11

1.2 Compiler Description and Documentation .. 11

1.3 Device Description ... 12

Chapter 2. Common C Interface

2.1 Introduction ... 13

2.2 Background – The Desire for Portable Code ... 13

2.3 Using the CCI ... 16

2.4 ANSI Standard Refinement .. 17

2.5 ANSI Standard Extensions ... 25

2.6 Compiler Features .. 39

Chapter 3. How To’s

3.1 Introduction ... 41

3.2 Installing and Activating the Compiler .. 41

3.3 Invoking the Compiler ... 43

3.4 Writing Source Code .. 46

3.5 Getting My Application to Do What I Want ... 56

3.6 Understanding the Compilation Process .. 60

3.7 Fixing Code That Does Not Work ... 67

Chapter 4. XC8 Command-line Driver

4.1 Introduction ... 71

4.2 Invoking the Compiler ... 72

4.3 The Compilation Sequence .. 75

4.4 Runtime Files ... 81

4.5 Compiler Output ... 84

4.6 Compiler Messages .. 86

4.7 XC8 Driver Options .. 91

4.8 Option Descriptions .. 92

4.9 MPLAB IDE V8 Universal Toolsuite Equivalents .. 117

4.10 MPLAB X Universal Toolsuite Equivalents ... 124

Chapter 5. C Language Features

5.1 Introduction ... 131

5.2 ANSI C Standard Issues .. 131

5.3 Device-Related Features .. 133

5.4 Supported Data Types and Variables .. 143

5.5 Memory Allocation and Access .. 165

MPLAB® XC8 C Compiler User’s Guide

DS52053B-page 4  2012 Microchip Technology Inc.

5.6 Operators and Statements ... 179

5.7 Register Usage ... 181

5.8 Functions .. 182

5.9 Interrupts .. 189

5.10 Main, Runtime Startup and Reset .. 194

5.11 Library Routines ... 198

5.12 Mixing C and Assembly Code .. 200

5.13 Optimizations .. 208

5.14 Preprocessing .. 210

5.15 Linking Programs ... 222

Chapter 6. Macro Assembler

6.1 Introduction ... 241

6.2 Assembler Usage ... 241

6.3 Options ... 242

6.4 MPLAB XC8 Assembly Language .. 246

6.5 Assembly-Level Optimizations ... 268

6.6 Assembly List Files ... 269

Chapter 7. Linker

7.1 Introduction ... 277

7.2 Operation .. 277

7.3 Relocation and Psects .. 285

7.4 Map Files .. 286

Chapter 8. Utilities

8.1 Introduction ... 291

8.2 Librarian ... 291

8.3 OBJTOHEX .. 295

8.4 CREF .. 297

8.5 CROMWELL ... 300

8.6 HEXMATE .. 303

Appendix A. Library Functions

Appendix B. Error and Warning Messages

Appendix C. Implementation-Defined Behavior

C.1 Translation (G.3.1) ... 479

C.2 Environment (G.3.2) .. 479

C.3 Identifiers (G.3.3) ... 480

C.4 Characters (G.3.4) ... 480

C.5 Integers (G.3.5) .. 481

C.6 Floating-Point (G.3.6) .. 482

C.7 Arrays and Pointers (G.3.7) ... 482

C.8 Registers (G.3.8) ... 482

C.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9) 483

C.10 Qualifiers (G.3.10) ... 483

C.11 Declarators (G.3.11) .. 483

 2012 Microchip Technology Inc. DS52053B-page 5

C.12 Statements (G.3.12) .. 483

C.13 Preprocessing Directives (G.3.13) ... 484

C.14 Library Functions (G.3.14) ... 485

Glossary ... 487

Index ... 507

Worldwide Sales and Service .. 518

MPLAB® XC8 C Compiler User’s Guide

DS52053B-page 6  2012 Microchip Technology Inc.

NOTES:

MPLAB® XC8 C COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS52053B-page 7

Preface

INTRODUCTION

This chapter contains general information that will be useful to know before using the

MPLAB® XC8 C Compiler User’s Guide. Items discussed in this chapter include:

• Document Layout

• Conventions Used in this Guide

• Warranty Registration

• Recommended Reading

• The Microchip Web Site

• Development Systems Customer Change Notification Service

• Customer Support

• Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MPLAB XC8 C Compiler. The manual layout

is as follows:

• Chapter 1. Compiler Overview

• Chapter 3. How To’s

• Chapter 4. XC8 Command-line Driver

• Chapter 5. C Language Features

• Chapter 6. Macro Assembler

• Chapter 7. Linker

• Chapter 8. Utilities

• Appendix A. Library Functions

• Appendix B. Error and Warning Messages

• Appendix C. Implementation-Defined Behavior

• Glossary

• Index

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and

documentation are constantly evolving to meet customer needs, so some actual dialogs

and/or tool descriptions may differ from those in this document. Please refer to our web site

(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each

page, in front of the page number. The numbering convention for the DS number is

“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the

document.

For the most up-to-date information on development tools, see the MPLAB® IDE online help.

Select the Help menu, and then Topics to open a list of available online help files.

MPLAB® XC8 C Compiler User’s Guide

DS52053B-page 8  2012 Microchip Technology Inc.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.

Sending in the Warranty Registration Card entitles users to receive new product

updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user’s guide describes how to use Chapter Name. Other useful documents are

listed below. The following Microchip documents are available and recommended as

supplemental reference resources.

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or

dialog

“Save project before build”

Underlined, italic text with

right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

N‘Rnnnn A number in verilog format,

where N is the total number of

digits, R is the radix and n is a

digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier New font:

Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be

any valid filename

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe

character: { | }

Choice of mutually exclusive

arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by

user

void main (void)
{ ...
}

Preface

 2012 Microchip Technology Inc. DS52053B-page 9

Readme for Chapter Name

For the latest information on using Chapter Name, read the “Readme for Chapter
Name.txt” file (an ASCII text file) in the Readmes subdirectory of the MPLAB® IDE

installation directory. The Readme file contains update information and known issues

that may not be included in this user’s guide.

Readme Files

For the latest information on using other tools, read the tool-specific Readme files in

the Readmes subdirectory of the MPLAB IDE installation directory. The Readme files

contain update information and known issues that may not be included in this user’s

guide.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web

site is used as a means to make files and information easily available to customers.

Accessible by using your favorite Internet browser, the web site contains the following

information:

• Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,

latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical

support requests, online discussion groups, Microchip consultant program

member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip

press releases, listing of seminars and events, listings of Microchip sales offices,

distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip

products. Subscribers will receive e-mail notification whenever there are changes,

updates, revisions or errata related to a specified product family or development tool of

interest.

To register, access the Microchip web site at www.microchip.com, click on Customer

Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• Compilers – The latest information on Microchip C compilers and other language

tools. These include the MPLAB® C18 and MPLAB® C30 C compilers; MPASM™

and MPLAB® ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;

and MPLIB™ and MPLAB® LIB30 object librarians.

• Emulators – The latest information on Microchip in-circuit emulators.This

includes the MPLAB® ICE 2000 and MPLAB ICE 4000.

• In-Circuit Debuggers – The latest information on the Microchip In-Circuit

Debugger, MPLAB® ICD 2.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®

Integrated Development Environment for development systems tools. This list is

focused on the MPLAB® IDE, MPLAB® SIM simulator, MPLAB® IDE Project Man-

ager and general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include

the MPLAB® PM3 and PRO MATE® II device programmers and the PICSTART®

Plus and PICkit™ 1 development programmers.

MPLAB® XC8 C Compiler User’s Guide

DS52053B-page 10  2012 Microchip Technology Inc.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of

sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

DOCUMENT REVISION HISTORY

Revision B (July 2012)

• Added 'how tos' chapter.

• Expanded section relating to PIC18 erratas.

• Updated the section relating to compiler optimization settings.

• Updated MPLAB v8 and MPLAB X IDE project option dialogs.

• Added sections describing PIC18 far qualifier and inline function qualifier.

• Expanded section describing the operation of the main() function

• Expanded information about equivalent assembly symbols for Baseline parts.

• Updated the table of predefined macro symbols.

• Added section on #pragma addrqual

• Added sections to do with inline-ing functions

• Updated diagrams and text associated with call graphs in the list file

• Updated library function section to be consistent with packaged libraries

• Added new compiler warnings and errors.

• Added new chapter describing the Common Compiler Interface Standard (CCI)

Revision A (February 2012)

Initial release of this document.

MPLAB® XC8 C COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS52053B-page 11

Chapter 1. Compiler Overview

1.1 INTRODUCTION

This chapter is an overview of the MPLAB XC8 C Compiler, including these topics.

• Compiler Description and Documentation

• Device Description

1.2 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB® XC8 C Compiler is a free-standing, optimizing ANSI C compiler. It sup-

ports all 8-bit PIC® microcontrollers: PIC10, PIC12, PIC16 and PIC18 series devices,

as well as the PIC14000 device.

The compiler is available for several popular operating systems, including 32- and

64-bit Windows®, Linux and Apple OS X.

The compiler is available in three operating modes: Free, Standard or PRO. The Stan-

dard and PRO operating modes are licensed modes and require a serial number to

enable them. Free mode is available for unlicensed customers. The basic compiler

operation, supported devices and available memory are identical across all modes.

The modes only differ in the level of optimization employed by the compiler.

1.2.1 Conventions

Throughout this manual, the term “compiler” is used. It can refer to all, or a subset of,

the collection of applications that comprise the MPLAB XC8 C Compiler. When it is not

important to identify which application performed an action, it will be attributed to the

compiler.

Likewise, “compiler” is often used to refer to the command-line driver. Although specif-

ically, the driver for the MPLAB XC8 C Compiler package is called xc8. The driver and

its options are discussed in Section 4.7 “XC8 Driver Options”. Accordingly, “compiler

options” commonly relates to command-line driver options.

In a similar fashion, “compilation” refers to all or a selection of steps involved in

generating source code into an executable binary image.

MPLAB® XC8 C Compiler User’s Guide

DS52053B-page 12  2012 Microchip Technology Inc.

1.3 DEVICE DESCRIPTION

This compiler supports 8-bit Microchip PIC devices with baseline, Mid-Range,

Enhanced Mid-Range, and PIC18 cores. The following descriptions indicate the

distinctions within those device cores:

The baseline core uses a 12-bit-wide instruction set and is available in PIC10, PIC12

and PIC16 part numbers.

The Mid-Range core uses a 14-bit-wide instruction set that includes more instructions

than the baseline core. It has larger data memory banks and program memory pages,

as well. It is available in PIC12, PIC14 and PIC16 part numbers.

The Enhanced Mid-Range core also uses a 14-bit-wide instruction set, but incorporates

additional instructions and features. There are both PIC12 and PIC16 part numbers

that are based on the Enhanced Mid-Range core.

The PIC18 core instruction set is 16-bits wide and features additional instructions and

an expanded register set. PIC18 core devices have part numbers that begin with

PIC18.

The compiler takes advantage of the target device’s instruction set, addressing modes

memory and registers whenever possible.

See Section 4.8.21 “--CHIPINFO: Display List of Supported Devices” for

information on finding the full list of devices supported by the compiler.

MPLAB® XC8 C COMPILER

USER’S GUIDE

 2012 Microchip Technology Inc. DS52053A-page 13

Chapter 2. Common C Interface

2.1 INTRODUCTION

The Common C Interface (CCI) is available with all MPLAB XC C compilers and is

designed to enhance code portability between these compilers. For example,

CCI-conforming code would make it easier to port from a PIC18 MCU using the MPLAB

XC8 C compiler to a PIC24 MCU using the MPLAB XC16 C compiler.

The CCI assumes that your source code already conforms to the ANSI Standard. If you

intend to use the CCI, it is your responsibility to write code that conforms. Legacy proj-

ects will need to be migrated to achieve conformance. A compiler option must also be

set to ensure that the operation of the compiler is consistent with the interface when the

project is built.

The following topics are examined in this chapter of the MPLAB XC8 C Compiler User’s

Guide:

• ANSI Standard Extensions

• Using the CCI

• ANSI Standard Refinement

• ANSI Standard Extensions

2.2 BACKGROUND – THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different

execution environment than that for which it was written. Rarely can code be one hun-

dred percent portable, but the more tolerant it is to change, the less time and effort it

takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,

but this is only part of the situation. The same code could be compiled for the same

target but with a different compiler. Differences between those compilers might lead to

the code failing at compile time or runtime, so this must be considered as well.

You may only write code for one target device and only use one brand of compiler, but

if there is no regulation of the compiler’s operation, simply updating your compiler

version may change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-

piler vendors can base their products on different technologies, implement different fea-

tures and code syntax, or improve the way their product works. Many a great compiler

optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed

and code is more portable. The American National Standards Institute (ANSI) pub-

lishes standards for many disciplines, including programming languages. The ANSI C

Standard is a universally adopted standard for the C programming language.

MPLAB® XC8 C Compiler User’s Guide

DS52053A-page 14  2012 Microchip Technology Inc.

2.2.1 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compilers ven-

dors to target new devices and improve code generation, with the known functional

operation of source code for programmers. If both goals can be met, source code can

be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a

conforming C program must follow, but the semantic rules by which that program will

be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a

conforming C program functions as described by the standard.

The standard describes implementation, the set of tools and the runtime environment

on which the code will run. If any of these change, e.g., you build for, and run on, a dif-

ferent target device, or if you update the version of the compiler you use to build, then

you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the

program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,

some specifications appear somewhat vague. For example, the standard states that an

int type must be able to hold at least a 16-bit value, but it does not go as far as saying

what the size of an int actually is; and the action of right-shifting a signed integer can

produce different results on different implementations; yet, these different results are

still ANSI C compliant.

If the standard is too strict, device architectures may not allow the compiler to conform.1

But, if it is too weak, programmers would see wildly differing results within different

compilers and architectures, and the standard would loose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups

that include the following behaviors:

Implementation-defined behavior

This is unspecified behavior where each implementation documents how the choice

is made.

Unspecified behavior

The standard provides two or more possibilities and imposes no further requirements

on which possibility is chosen in any particular instance.

Undefined behavior

This is behavior for which the standard imposes no requirements.

Code that strictly conforms to the standard does not produce output that is dependent

on any unspecified, undefined, or implementation-defined behavior. The size of an

int, which we used as an example earlier, falls into the category of behavior that is

defined by implementation. That is to say, the size of an int is defined by which com-

piler is being used, how that compiler is being used, and the device that is being tar-

geted.

All the MPLAB XC compilers conform to the ANS X3.159-1989 Standard for program-

ming languages (with the exception of the XC8 compiler’s inability to allow recursion,

as mentioned in the footnote). This is commonly called the C89 Standard. Some fea-

tures from the later standard, C99, are also supported.

1. Case in point: The mid-range PIC® microcontrollers do not have a data stack. Because a compiler

targeting this device cannot implement recursion, it (strictly speaking) cannot conform to the ANSI

C Standard. This example illustrate a situation in which the standard is too strict for mid-range

devices and tools.

Common C Interface

 2012 Microchip Technology Inc. DS52053A-page 15

For freestanding implementations – or for what we typically call embedded applications

– the standard allows non-standard extensions to the language, but obviously does not

enforce how they are specified or how they work. When working so closely to the

device hardware, a programmer needs a means of specifying device setup and inter-

rupts, as well as utilizing the often complex world of small-device memory

architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and

compiler vendors, programmers need to consider the implementation-defined behavior

of their tools and the probability that they may need to use extensions to the C language

that are non-standard. Both of these circumstances can have an impact on code por-

tability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier

for programmers to achieve consistent outcomes on all Microchip devices when using

any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the ANSI C Standard

The CCI documents specific behavior for some code in which actions are implemen-

tation-defined behavior under the ANSI C Standard. For example, the result of

right-shifting a signed integer is fully defined by the CCI. Note that many

implementation-defined items that closely couple with device characteristics, such as

the size of an int, are not defined by the CCI.

Consistent syntax for non-standard extensions

The CCI non-standard extensions are mostly implemented using keywords with a uni-

form syntax. They replace keywords, macros and attributes that are the native com-

piler implementation. The interpretation of the keyword may differ across each com-

piler, and any arguments to the keywords may be device specific.

Coding guidelines

The CCI may indicate advice on how code should be written so that it can be ported

to other devices or compilers. While you may choose not to follow the advice, it will

not conform to the CCI.

MPLAB® XC8 C Compiler User’s Guide

DS52053A-page 16  2012 Microchip Technology Inc.

2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and

standardizing the syntax for extensions to the language.

The CCI is something you choose to follow and put into effect, thus it is relevant for new

projects, although you may choose to modify existing projects so they conform.

For your project to conform to the CCI, you must do the following things.

Enable the CCI

Select the MPLAB IDE widget Use CCI Syntax in your project, or use the

command-line option that is equivalent.

Include <xc.h> in every module

Some CCI features are only enabled if this header is seen by the compiler.

Ensure ANSI compliance

Code that does not conform to the ANSI C Standard does not confirm to the CCI.

Observe refinements to ANSI by the CCI

Some ANSI implementation-defined behavior is defined explicitly by the CCI.

Use the CCI extensions to the language

Use the CCI extensions rather than the native language extensions

The next sections detail specific items associated with the CCI. These items are seg-

regated into those that refine the standard, those that deal with the ANSI C Standard

extensions, and other miscellaneous compiler options and usage. Guidelines are indi-

cated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed

in this document, then it is not part of the CCI. For example, GCC case ranges, label

addresses and 24-bit short long types are not part of the CCI. Programs which use

these features do not conform to the CCI. The compiler may issue a warning or error

to indicate when you use a non-CCI feature and the CCI is enabled.

Common C Interface

 2012 Microchip Technology Inc. DS52053A-page 17

2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined

behaviors outlined in the ANSI C Standard.

2.4.1 Source File Encoding

Under the CCI, a source file must be written using characters from the 7-bit ASCII set.

Lines may be terminated using a line feed ('\n') or carriage return ('\r') that is immedi-

ately followed by a line feed. Escaped characters may be used in character constants

or string literals to represent extended characters not in the basic character set.

2.4.1.1 EXAMPLE

The following shows a string constant being defined that uses escaped characters.

const char myName[] = "Bj\370rk\n";

2.4.1.2 DIFFERENCES

All compilers have used this character set.

2.4.1.3 MIGRATION TO THE CCI

No action required.

2.4.2 The Prototype for main

The prototype for the main() function is

int main(void);

2.4.2.1 EXAMPLE

The following shows an example of how main() might be defined

int main(void)
{

while(1)
process();

}

2.4.2.2 DIFFERENCES

The 8-bit compilers used a void return type for this function.

2.4.2.3 MIGRATION TO THE CCI

Each program has one definition for the main() function. Confirm the return type for

main() in all projects previously compiled for 8-bit targets.

2.4.3 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

2.4.3.1 EXAMPLE

The following example shows two conforming include directives.

#include <usb_main.h>
#include "global.h"

MPLAB® XC8 C Compiler User’s Guide

DS52053A-page 18  2012 Microchip Technology Inc.

2.4.3.2 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous

versions of all compilers. Compatibility problems arose when Windows-style separa-

tors “\” were used and the code compiled under other host operating systems. Under

the CCI, no directory specifiers should be used.

2.4.3.3 MIGRATION TO THE CCI

Any #include directives that use directory separators in the header file specifications

should be changed. Remove all but the header file name in the directive. Add the direc-

tory path to the compiler’s include search path or MPLAB IDE equivalent. This will force

the compiler to search the directories specified with this option.

For example, the following code:

#include <inc/lcd.h>

should be changed to:

#include <lcd.h>

and the path to the inc directory added to the compiler’s header search path in your

MPLAB IDE project properties, or on the command-line as follows:

-Ilcd

2.4.4 Include Search Paths

When you include a header file under the CCI, the file should be discoverable in the

paths searched by the compiler detailed below.

For any header files specified in angle bracket delimiters < >, the search paths should

be those specified by -I options (or the equivalent MPLAB IDE option), then the stan-

dard compiler include directories. The -I options are searched in the order in which

they are specified.

For any file specified in quote characters " ", the search paths should first be the cur-

rent working directory. In the case of an MPLAB X project, the current working directory

is the directory in which the C source file is located. If unsuccessful, the search paths

should be the same directories searched when the header files is specified in angle

bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2.4.4.1 EXAMPLE

If including a header file as in the following directive

#include "myGlobals.h"

The header file should be locatable in the current working directory, or the paths spec-

ified by any -I options, or the standard compiler directories. If it is located elsewhere,

this does not conform to the CCI.

2.4.4.2 DIFFERENCES

The compiler operation under the CCI is not changed. This is purely a coding guide line.

2.4.4.3 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the -I option (or

the equivalent MPLAB IDE option), and use the -I option in place of this. Ensure the

header file can be found in the directories specified in this section.

Common C Interface

 2012 Microchip Technology Inc. DS52053A-page 19

2.4.5 The Number of Significant Initial Characters in an Identifier

At least the first 255 characters in an identifier (internal and external) are significant.

This extends upon the requirement of the ANSI C Standard which states a lower num-

ber of significant characters are used to identify an object.

2.4.5.1 EXAMPLE

The following example shows two poorly named variables, but names which are

considered unique under the CCI.

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningFast;
int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningSlow;

2.4.5.2 DIFFERENCES

Former 8-bit compilers used 31 significant characters by default, but an option allowed

this to be extended.

The 16- and 32-bit compilers did not impose a limit on the number of significant char-

acters.

2.4.5.3 MIGRATION TO THE CCI

No action required. You may take advantage of the less restrictive naming scheme.

2.4.6 Sizes of Types

The sizes of the basic C types, for example char, int and long, are not fully defined

by the CCI. These types, by design, reflect the size of registers and other architectural

features in the target device. They allow the device to efficiently access objects of this

type. The ANSI C Standard does, however, indicate minimum requirements for these

types, as specified in <limits.h>.

If you need fixed-size types in your project, use the types defined in <stdint.h>, e.g.,

uint8_t or int16_t. These types are consistently defined across all XC compilers,

even outside of the CCI.

Essentially, the C language offers a choice of two groups of types: those that offer sizes

and formats that are tailored to the device you are using; or those that have a fixed size,

regardless of the target.

2.4.6.1 EXAMPLE

The following example shows the definition of a variable, native, whose size will allow

efficient access on the target device; and a variable, fixed, whose size is clearly indi-

cated and remains fixed, even though it may not allow efficient access on every device.

int native;
int16_t fixed;

2.4.6.2 DIFFERENCES

This is consistent with previous types implemented by the compiler.

2.4.6.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of

the types defined by <stdint.h>.

MPLAB® XC8 C Compiler User’s Guide

DS52053A-page 20  2012 Microchip Technology Inc.

2.4.7 Plain char Types

The type of a plain char is unsigned char. It is generally recommended that all def-

initions for the char type explicitly state the signedness of the object.

2.4.7.1 EXAMPLE

The following example

char foobar;

defines an unsigned char object called foobar.

2.4.7.2 DIFFERENCES

The 8-bit compilers have always treated plain char as an unsigned type.

The 16- and 32-bit compilers used signed char as the default plain char type. The

-funsigned-char option on those compilers changed the default type to be

unsigned char.

2.4.7.3 MIGRATION TO THE CCI

Any definition of an object defined as a plain char and using the 16- or 32-bit compilers

needs review. Any plain char that was intended to be a signed quantity should be

replaced with an explicit definition, for example.

signed char foobar;

You may use the -funsigned-char option on XC16/32 to change the type of plain

char, but since this option is not supported on XC8, the code is not strictly conforming.

2.4.8 Signed Integer Representation

The value of a signed integer is determined by taking the two’s complement of the inte-

ger.

2.4.8.1 EXAMPLE

The following shows a variable, test, that is assigned the value -28 decimal.

signed char test = 0xE4;

2.4.8.2 DIFFERENCES

All compilers have represented signed integers in the way described in this section.

2.4.8.3 MIGRATION TO THE CCI

No action required.

Common C Interface

 2012 Microchip Technology Inc. DS52053A-page 21

2.4.9 Integer conversion

When converting an integer type to a signed integer of insufficient size, the original

value is truncated from the most-significant bit to accommodate the target size.

2.4.9.1 EXAMPLE

The following shows an assignment of a value that will be truncated.

signed char destination;
unsigned int source = 0x12FE;
destination = source;

Under the CCI, the value of destination after the alignment will be -2 (i.e., the bit

pattern 0xFE).

2.4.9.2 DIFFERENCES

All compilers have performed integer conversion in an identical fashion to that

described in this section.

2.4.9.3 MIGRATION TO THE CCI

No action required.

2.4.10 Bit-wise Operations on Signed Values

Bitwise operations on signed values act on the two’s complement representation,

including the sign bit. See also Section 2.4.11 “Right-shifting Signed Values”.

2.4.10.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND oper-

ation.

signed char output, input = -13;
output = input & 0x7E;

Under the CCI, the value of output after the assignment will be 0x72.

2.4.10.2 DIFFERENCES

All compilers have performed bitwise operations in an identical fashion to that

described in this section.

2.4.10.3 MIGRATION TO THE CCI

No action required.

2.4.11 Right-shifting Signed Values

Right-shifting a signed value will involve sign extension. This will preserve the sign of

the original value.

2.4.11.1 EXAMPLE

The following shows an example of a negative quantity involved in a bitwise AND

operation.

signed char input, output = -13;
output = input >> 3;

Under the CCI, the value of output after the assignment will be -2 (i.e., the bit pattern

0xFE).

MPLAB® XC8 C Compiler User’s Guide

DS52053A-page 22  2012 Microchip Technology Inc.

2.4.11.2 DIFFERENCES

All compilers have performed right shifting as described in this section.

2.4.11.3 MIGRATION TO THE CCI

No action required.

2.4.12 Conversion of Union Member Accessed Using Member With
Different Type

If a union defines several members of different types and you use one member identi-

fier to try to access the contents of another (whether any conversion is applied to the

result) is implementation-defined behavior in the standard. In the CCI, no conversion is

applied and the bytes of the union object are interpreted as an object of the type of the

member being accessed, without regard for alignment or other possible invalid condi-

tions.

2.4.12.1 EXAMPLE

The following shows an example of a union defining several members.

union {
signed char code;
unsigned int data;
float offset;

} foobar;

Code that attempts to extract offset by reading data is not guaranteed to read the

correct value.

float result;
result = foobbar.data;

2.4.12.2 DIFFERENCES

All compilers have not converted union members accessed via other members.

2.4.12.3 MIGRATION TO THE CCI

No action required.

2.4.13 Default Bit-field int Type

The type of a bit-field specified as a plain int will be identical to that of one defined

using unsigned int. This is quite different to other objects where the types int,

signed and signed int are synonymous. It is recommended that the signedness of

the bit-field be explicitly stated in all bit-field definitions.

2.4.13.1 EXAMPLE

The following shows an example of a structure tag containing bit-fields which are

unsigned integers and with the size specified.

struct OUTPUTS {
int direction :1;
int parity :3;
int value :4;

};

Common C Interface

 2012 Microchip Technology Inc. DS52053A-page 23

2.4.13.2 DIFFERENCES

The 8-bit compilers have previously issued a warning if type int was used for bit-fields,

but would implement the bit-field with an unsigned int type.

The 16- and 32-bit compilers have implemented bit-fields defined using int as having

a signed int type, unless the option -funsigned-bitfields was specified.

2.4.13.3 MIGRATION TO THE CCI

Any code that defines a bit-field with the plain int type should be reviewed. If the inten-

tion was for these to be signed quantities, then the type of these should be changed to

signed int, for example, in:

struct WAYPT {
int log :3;
int direction :4;

};

the bit-field type should be changed to signed int, as in:

struct WAYPT {
signed int log :3;
signed int direction :4;

};

2.4.14 Bit-fields Straddling a Storage Unit Boundary

Whether a bit-field can straddle a storage unit boundary is implementation-defined

behavior in the standard. In the CCI, bit-fields will not straddle a storage unit boundary;

a new storage unit will be allocated to the structure, and padding bits will fill the gap.

Note that the size of a storage unit differs with each compiler as this is based on the

size of the base data type (e.g., int) from which the bit-field type is derived. On 8-bit

compilers this unit is 8-bits in size; for 16-bit compilers, it is 16 bits; and for 32-bit com-

pilers, it is 32 bits in size.

2.4.14.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
 unsigned first : 6;
 unsigned second :6;
} order;

Under the CCI and using XC8, the storage allocation unit is byte sized. The bit-field

second, will be allocated a new storage unit since there are only 2 bits remaining in

the first storage unit in which first is allocated. The size of this structure, order, will

be 2 bytes.

2.4.14.2 DIFFERENCES

This allocation is identical with that used by all previous compilers.

2.4.14.3 MIGRATION TO THE CCI

No action required.

2.4.15 The Allocation Order of Bits-field

The memory ordering of bit-fields into their storage unit is not specified by the ANSI C

Standard. In the CCI, the first bit defined will be the least significant bit of the storage

unit in which it will be allocated.

MPLAB® XC8 C Compiler User’s Guide

DS52053A-page 24  2012 Microchip Technology Inc.

2.4.15.1 EXAMPLE

The following shows a structure containing bit-fields being defined.

struct {
 unsigned lo : 1;
 unsigned mid :6;
 unsigned hi : 1;
} foo;

The bit-field lo will be assigned the least significant bit of the storage unit assigned to

the structure foo. The bit-field mid will be assigned the next 6 least significant bits, and

hi, the most significant bit of that same storage unit byte.

2.4.15.2 DIFFERENCES

This is identical with the previous operation of all compilers.

2.4.15.3 MIGRATION TO THE CCI

No action required.

2.4.16 The NULL macro

The NULL macro is defined in <stddef.h>; however, its definition is implementa-

tion-defined behavior. Under the CCI, the definition of NULL is the expression (0).

2.4.16.1 EXAMPLE

The following shows a pointer being assigned a null pointer constant via the NULL

macro.

int * ip = NULL;

The value of NULL, (0), is implicitly cast to the destination type.

2.4.16.2 DIFFERENCES

The 32-bit compilers previously assigned NULL the expression ((void *)0).

2.4.16.3 MIGRATION TO THE CCI

No action required.

2.4.17 Floating-point sizes

Under the CCI, floating-point types must not be smaller than 32 bits in size.

2.4.17.1 EXAMPLE

The following shows the definition for outY, which will be at least 32-bit in size.

float outY;

2.4.17.2 DIFFERENCES

The 8-bit compilers have allowed the use of 24-bit float and double types.

2.4.17.3 MIGRATION TO THE CCI

When using 8-bit compilers, the float and double type will automatically be made

32 bits in size once the CCI mode is enabled. Review any source code that may have

assumed a float or double type and may have been 24 bits in size.

No migration is required for other compilers.

Common C Interface

 2012 Microchip Technology Inc. DS52053A-page 25

2.5 ANSI STANDARD EXTENSIONS

The following topics describe how the CCI provides device-specific extensions to the

standard.

2.5.1 Generic Header File

A single header file <xc.h> must be used to declare all compiler- and device-specific

types and SFRs. You must include this file into every module to conform with the CCI.

Some CCI definitions depend on this header being seen.

2.5.1.1 EXAMPLE

The following shows this header file being included, thus allowing conformance with the

CCI, as well as allowing access to SFRs.

#include <xc.h>

2.5.1.2 DIFFERENCES

Some 8-bit compilers used <htc.h> as the equivalent header. Previous versions of

the 16- and 32-bit compilers used a variety of headers to do the same job.

2.5.1.3 MIGRATION TO THE CCI

Change:

#include <htc.h>

used previously in 8-bit compiler code, or family-specific header files as in the following

examples:

#include <p32xxxx.h>
#include <p30fxxxx.h>
#include <p33Fxxxx.h>
#include <p24Fxxxx.h>
#include "p30f6014.h"

to:

#include <xc.h>

2.5.2 Absolute addressing

Variables and functions can be placed at an absolute address by using the __at()

construct.qualifier Note that XC16/32 may require the variable or function to be placed

in a special section for absolute addressing to work. Stack-based (auto and parame-

ter) variables cannot use the __at() specifier.

2.5.2.1 EXAMPLE

The following shows two variables and a function being made absolute.

int scanMode __at(0x200);
const char keys[] __at(123) = { ’r’, ’s’, ’u’, ’d’};

int modify(int x) __at(0x1000) {
return x * 2 + 3;

}

2.5.2.2 DIFFERENCES

The 8-bit compilers have used an @ symbol to specify an absolute address.

The 16- and 32-bit compilers have used the address attribute to specify an object’s

address.

	Contact us
	MPLAB XC8 C Compiler User's Guide
	Table of Contents
	Preface
	Introduction
	Document Layout
	Conventions Used in this Guide
	Documentation Conventions

	Warranty Registration
	Recommended Reading
	The Microchip Web Site
	Development Systems Customer Change Notification Service
	Customer Support
	Document Revision History

	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Compiler Description and Documentation
	1.2.1 Conventions

	1.3 Device Description

	Chapter 2. Common C Interface
	2.1 Introduction
	2.2 Background – The Desire for Portable Code
	2.2.1 The ANSI Standard
	2.2.2 The Common C Interface

	2.3 Using the CCI
	2.4 ANSI Standard Refinement
	2.4.1 Source File Encoding
	2.4.1.1 Example
	2.4.1.2 Differences
	2.4.1.3 Migration to the CCI

	2.4.2 The Prototype for main
	2.4.2.1 Example
	2.4.2.2 Differences
	2.4.2.3 Migration to the CCI

	2.4.3 Header File Specification
	2.4.3.1 Example
	2.4.3.2 Differences
	2.4.3.3 Migration to the CCI

	2.4.4 Include Search Paths
	2.4.4.1 Example
	2.4.4.2 Differences
	2.4.4.3 Migration to the CCI

	2.4.5 The Number of Significant Initial Characters in an Identifier
	2.4.5.1 Example
	2.4.5.2 Differences
	2.4.5.3 Migration to the CCI

	2.4.6 Sizes of Types
	2.4.6.1 Example
	2.4.6.2 Differences
	2.4.6.3 Migration to the CCI

	2.4.7 Plain char Types
	2.4.7.1 Example
	2.4.7.2 Differences
	2.4.7.3 Migration to the CCI

	2.4.8 Signed Integer Representation
	2.4.8.1 Example
	2.4.8.2 Differences
	2.4.8.3 Migration to the CCI

	2.4.9 Integer conversion
	2.4.9.1 Example
	2.4.9.2 Differences
	2.4.9.3 Migration to the CCI

	2.4.10 Bit-wise Operations on Signed Values
	2.4.10.1 Example
	2.4.10.2 Differences
	2.4.10.3 Migration to the CCI

	2.4.11 Right-shifting Signed Values
	2.4.11.1 Example
	2.4.11.2 Differences
	2.4.11.3 Migration to the CCI

	2.4.12 Conversion of Union Member Accessed Using Member With Different Type
	2.4.12.1 Example
	2.4.12.2 Differences
	2.4.12.3 Migration to the CCI

	2.4.13 Default Bit-field int Type
	2.4.13.1 Example
	2.4.13.2 Differences
	2.4.13.3 Migration to the CCI

	2.4.14 Bit-fields Straddling a Storage Unit Boundary
	2.4.14.1 Example
	2.4.14.2 Differences
	2.4.14.3 Migration to the CCI

	2.4.15 The Allocation Order of Bits-field
	2.4.15.1 Example
	2.4.15.2 Differences
	2.4.15.3 Migration to the CCI

	2.4.16 The NULL macro
	2.4.16.1 Example
	2.4.16.2 Differences
	2.4.16.3 Migration to the CCI

	2.4.17 Floating-point sizes
	2.4.17.1 Example
	2.4.17.2 Differences
	2.4.17.3 Migration to the CCI

