
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

  

 2002-2011 Microchip Technology Inc. DS51284K

MPLAB® C Compiler

for PIC24 MCUs

and dsPIC® DSCs

User’s Guide

DS51284K-page 2  2002-2011 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer’s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,

KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,

PIC32 logo, rfPIC and UNI/O are registered trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,

MXDEV, MXLAB, SEEVAL and The Embedded Control

Solutions Company are registered trademarks of Microchip

Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,

chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,

dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,

FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,

Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,

MPLINK, mTouch, Omniscient Code Generation, PICC,

PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,

rfLAB, Select Mode, Total Endurance, TSHARC,

UniWinDriver, WiperLock and ZENA are trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2002-2011, Microchip Technology Incorporated, Printed in

the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-61341-294-7

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® C COMPILER FOR

PIC24 MCUs AND dsPIC® DSCs

USER’S GUIDE

 2003-2011 Microchip Technology Inc. Update Draft DS51284J3-page 3

Table of Contents

Preface ... 7

Chapter 1. Compiler Overview

1.1 Introduction ... 13

1.2 Highlights .. 13

1.3 Compiler Description and Documentation .. 13

1.4 Compiler and Other Development Tools .. 14

1.5 Compiler Feature Set ... 16

Chapter 2. Differences Between 16-Bit Device C and ANSI C

2.1 Introduction ... 17

2.2 Highlights .. 17

2.3 Keyword Differences .. 17

2.4 Statement Differences .. 37

2.5 Expression Differences .. 38

Chapter 3. Using the Compiler on the Command Line

3.1 Introduction ... 39

3.2 Highlights .. 39

3.3 Overview .. 39

3.4 File Naming Conventions ... 40

3.5 Options ... 40

3.6 Environment Variables ... 64

3.7 Predefined Macro Names ... 65

3.8 Compiling a Single File on the Command Line .. 66

3.9 Compiling Multiple Files on the Command Line ... 67

3.10 Notable Symbols .. 67

Chapter 4. Run Time Environment

4.1 Introduction ... 69

4.2 Highlights .. 69

4.3 Address Spaces ... 69

4.4 Startup and Initialization ... 70

4.5 Memory Spaces ... 71

4.6 Memory Models .. 72

4.7 Locating Code and Data ... 74

4.8 Software Stack ... 75

4.9 The C Stack Usage .. 76

4.10 The C Heap Usage ... 78

4.11 Function Call Conventions ... 79

4.12 Register Conventions ... 81

16-Bit C Compiler User’s Guide

DS51284J3-page 4 Update Draft  2003-2011 Microchip Technology Inc.

4.13 Bit Reversed and Modulo Addressing .. 82

4.14 Program Space Visibility (PSV) Usage .. 82

4.15 Using Large Arrays ... 84

Chapter 5. Data Types

5.1 Introduction ... 85

5.2 Highlights .. 85

5.3 Data Representation .. 85

5.4 Integer .. 85

5.5 Floating Point ... 86

5.6 Pointers .. 86

Chapter 6. Additional C Pointer Types

6.1 Introduction ... 87

6.2 Managed PSV Pointers .. 87

6.3 PMP Pointers ... 89

6.4 External Pointers .. 91

6.5 Extended Data Space Pointers .. 95

Chapter 7. Device Support Files

7.1 Introduction ... 97

7.2 Highlights .. 97

7.3 Processor Header Files .. 97

7.4 Register Definition Files ... 98

7.5 Using SFRs .. 99

7.6 Using Macros ... 101

7.7 Accessing EEDATA from C Code – PIC24F MCUS, dsPIC30F/33F DSCs only
102

Chapter 8. Interrupts

8.1 Introduction ... 105

8.2 Highlights .. 105

8.3 Writing an Interrupt Service Routine .. 106

8.4 Writing the Interrupt Vector .. 108

8.5 Interrupt Service Routine Context Saving .. 118

8.6 Latency ... 118

8.7 Nesting Interrupts ... 118

8.8 Enabling/Disabling Interrupts ... 119

8.9 Sharing Memory Between Interrupt Service Routines and Mainline Code 120

8.10 PSV Usage with Interrupt Service Routines ... 123

Chapter 9. Mixing Assembly Language and C Modules

9.1 Introduction ... 125

9.2 Highlights .. 125

9.3 Mixing Assembly Language and C Variables and Functions 125

9.4 Using Inline Assembly Language ... 127

Appendix A. Implementation-Defined Behavior

A.1 Introduction .. 135

Table of Contents

 2003-2011 Microchip Technology Inc. Update Draft DS51284J3-page 5

A.2 Highlights ... 135

A.3 Translation ... 136

A.4 Environment ... 136

A.5 Identifiers ... 137

A.6 Characters ... 137

A.7 Integers .. 138

A.8 Floating Point ... 138

A.9 Arrays and Pointers ... 139

A.10 Registers .. 139

A.11 Structures, Unions, Enumerations and Bit fields 140

A.12 Qualifiers .. 140

A.13 Declarators ... 140

A.14 Statements ... 140

A.15 Preprocessing Directives ... 141

A.16 Library Functions ... 142

A.17 Signals ... 143

A.18 Streams and Files .. 143

A.19 tmpfile .. 144

A.20 errno ... 144

A.21 Memory .. 144

A.22 abort ... 144

A.23 exit ... 144

A.24 getenv .. 145

A.25 system .. 145

A.26 strerror ... 145

Appendix B. Built-in Functions

B.1 Introduction .. 147

B.2 Built-In Function List .. 148

Appendix C. MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices

C.1 Introduction .. 173

C.2 Highlights ... 173

C.3 Data Formats ... 174

C.4 Pointers .. 174

C.5 Storage Classes .. 174

C.6 Stack Usage .. 174

C.7 Storage Qualifiers .. 175

C.8 Predefined Macro Names .. 175

C.9 Integer Promotions .. 175

C.10 String Constants .. 175

C.11 Access Memory ... 175

C.12 Inline Assembly .. 175

C.13 Pragmas .. 176

C.14 Memory Models ... 177

C.15 Calling Conventions ... 177

16-Bit C Compiler User’s Guide

DS51284J3-page 6 Update Draft  2003-2011 Microchip Technology Inc.

C.16 Startup Code .. 177

C.17 Compiler-Managed Resources .. 177

C.18 Optimizations ... 178

C.19 Object Module Format ... 178

C.20 Implementation-Defined Behavior ... 178

C.21 Bit fields ... 179

Appendix D. Diagnostics

D.1 Introduction .. 181

D.2 Errors ... 181

D.3 Warnings .. 200

Appendix E. Deprecated Features

E.1 Introduction .. 221

E.2 Highlights ... 221

E.3 Predefined Constants .. 221

E.4 Variables in Specified Registers .. 222

Appendix F. ASCII Character Set ...225

Appendix G. GNU Free Documentation License

G.1 PREAMBLE ... 227

G.2 APPLICABILITY AND DEFINITIONS .. 227

G.3 VERBATIM COPYING ... 229

G.4 COPYING IN QUANTITY .. 229

G.5 MODIFICATIONS .. 230

G.6 COMBINING DOCUMENTS .. 231

G.7 COLLECTIONS OF DOCUMENTS ... 231

G.8 AGGREGATION WITH INDEPENDENT WORKS 232

G.9 TRANSLATION ... 232

G.10 TERMINATION .. 232

G.11 FUTURE REVISIONS OF THIS LICENSE .. 233

G.12 RELICENSING .. 233

Glossary ...235

Index ...255

Worldwide Sales and Service ...265

MPLAB® C COMPILER FOR

PIC24 MCUs AND dsPIC® DSCs

USER’S GUIDE

 2002-2011 Microchip Technology Inc. DS51284K-page 7

Preface

INTRODUCTION

This chapter contains general information that will be useful to know before using the

MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs. Items discussed include:

• Document Layout

• Conventions Used in this Guide

• Recommended Reading

• The Microchip Web Site

• Development Systems Customer Change Notification Service

• Customer Support

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and

documentation are constantly evolving to meet customer needs, so some actual dialogs

and/or tool descriptions may differ from those in this document. Please refer to our web site

(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each

page, in front of the page number. The numbering convention for the DS number is

“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the

document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.

Select the Help menu, and then Topics to open a list of available on-line help files.

16-Bit C Compiler User’s Guide

DS51284K-page 8  2002-2011 Microchip Technology Inc.

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 16-bit

applications. The document layout is as follows:

• Chapter 1: Compiler Overview – describes the compiler, development tools and
feature set.

• Chapter 2: Differences between 16-Bit Device C and ANSI C – describes the
differences between the C language supported by the compiler syntax and the
standard ANSI-89 C.

• Chapter 3: Using the Compiler on the Command Line – describes how to use
the compiler from the command line.

• Chapter 4: Run Time Environment – describes the compiler run-time model,
including information on sections, initialization, memory models, the software stack
and much more.

• Chapter 5: Data Types – describes the compiler integer, floating point and pointer
data types.

• Chapter 6: Additional C Pointers – describes additional C pointers available.

• Chapter 7: Device Support Files – describes the compiler header and register
definition files, as well as how to use with SFRs.

• Chapter 8: Interrupts – describes how to use interrupts.

• Chapter 9: Mixing Assembly Language and C Modules – provides guidelines to
using the compiler with 16-bit assembly language modules.

• Appendix A: Implementation-Defined Behavior – details compiler-specific

parameters described as implementation-defined in the ANSI standard.

• Appendix B: Built-in Functions – lists the built-in functions of the C compiler.

• Appendix C: Diagnostics – lists error and warning messages generated by the

compiler.

• Appendix D: MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices – highlights

the differences between the PIC18 MCU C compiler and the 16-bit C compiler.

• Appendix E: Deprecated Features – details features that are considered

obsolete.

• Appendix F: ASCII Character Set – contains the ASCII character set.

• Appendix G: GNU Free Documentation License – usage license for the Free

Software Foundation.

Preface

 2002-2011 Microchip Technology Inc. DS51284K-page 9

CONVENTIONS USED IN THIS GUIDE

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or

dialog

“Save project before build”

Underlined, italic text with

right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ’A’

Italic Courier A variable argument file.o, where file can be

any valid filename

Square brackets [] Optional arguments mpasmwin [options]
file [options]

Curly brackets and pipe

character: { | }

Choice of mutually exclusive

arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by

user

void main (void)
{ ...
}

Sidebar Text

Standard edition only.

This feature supported only in

the standard edition of the

software, i.e., not supported in

standard evaluation (after 60

days) or lite editions.

-mpa option

Device Dependent.

This feature is not supported

on all devices. Devices sup-

ported will be listed in the title

or text.

xmemory attribute

STD

DD

16-Bit C Compiler User’s Guide

DS51284K-page 10  2002-2011 Microchip Technology Inc.

RECOMMENDED READING

This documentation describes how to use the MPLAB C Compiler for PIC24 MCUs and

dsPIC DSCs. Other useful documents are listed below. The following Microchip

documents are available and recommended as supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML

files) included with the software.

16-Bit Language Tools Getting Started (DS70094)

A guide to installing and working with the Microchip language tools for 16-bit devices.

Examples using the 16-bit simulator SIM30 (a component of MPLAB SIM) are

provided.

MPLAB® Assembler, Linker and Utilities for PIC24 MCUs and dsPIC® DSCs

User’s Guide (DS51317)

A guide to using the 16-bit assembler, object linker, object archiver/librarian and various

utilities.

16-Bit Language Tools Libraries (DS51456)

A descriptive listing of libraries available for Microchip 16-bit devices. This includes

standard (including math) libraries and C compiler built-in functions. DSP and 16-bit

peripheral libraries are described in Readme files provided with each peripheral library

type.

Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions

and features. Among these are:

• Individual and family data sheets

• Family reference manuals

• Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems – Programming Language – C.

American National Standards Institute (ANSI), 11 West 42nd. Street, New York,

New York, 10036.

This standard specifies the form and establishes the interpretation of programs

expressed in the programming language C. Its purpose is to promote portability,

reliability, maintainability and efficient execution of C language programs on a

variety of computing systems.

Preface

 2002-2011 Microchip Technology Inc. DS51284K-page 11

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,

Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second

Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,

Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology

Publishing, Eagle Rock, Virginia 24085.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web

site is used as a means to make files and information easily available to customers.

Accessible by using your favorite Internet browser, the web site contains the following

information:

• Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,

latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical

support requests, online discussion groups, Microchip consultant program

member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip

press releases, listing of seminars and events, listings of Microchip sales offices,

distributors and factory representatives

16-Bit C Compiler User’s Guide

DS51284K-page 12  2002-2011 Microchip Technology Inc.

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip

products. Subscribers will receive e-mail notification whenever there are changes,

updates, revisions or errata related to a specified product family or development tool of

interest.

To register, access the Microchip web site at www.microchip.com, click on Customer

Change Notification and follow the registration instructions.

The Development Systems product group categories are:

• Compilers – The latest information on Microchip C compilers, assemblers, linkers

and other language tools. These include all MPLAB C compilers; all MPLAB

assemblers (including MPASM™ assembler); all MPLAB linkers (including

MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object

librarian).

• Emulators – The latest information on Microchip in-circuit emulators. These

include the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators

• In-Circuit Debuggers – The latest information on Microchip in-circuit debuggers.

These include the MPLAB ICD 2 and 3 in-circuit debuggers and PICkit™ 2 and 3

debug express.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®

Integrated Development Environment for development systems tools. This list is

focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and

MPLAB SIM simulator, as well as general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include

the device (production) programmers MPLAB REAL ICE in-circuit emulator,

MPLAB ICD 3 in-circuit debugger, MPLAB PM3, and PRO MATE II and

development (nonproduction) programmers MPLAB ICD 2 in-circuit debugger,

PICSTART® Plus and PICkit 1, 2 and 3.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of

sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

MPLAB® C COMPILER FOR

PIC24 MCUs AND dsPIC® DSCs

USER’S GUIDE

 2002-2011 Microchip Technology Inc. DS51284K-page 13

Chapter 1. Compiler Overview

1.1 INTRODUCTION

The dsPIC® family of Digital Signal Controllers (dsPIC30F and dsPIC33F DSCs) com-

bines the high performance required in DSP applications with standard microcontroller

features needed for embedded applications. PIC24 MCUs are identical to the dsPIC

DSCs with the exception that they do not have the digital signal controller module or

that subset of instructions. They are a subset and are high-performance micro-

controllers intended for applications that do not require the power of the DSC

capabilities.

All of these devices are fully supported by a complete set of software development

tools, including an optimizing C compiler, an assembler, a linker and an archiver/

librarian.

This chapter provides an overview of these tools and introduces the features of the

optimizing C compiler, including how it works with the assembler and linker. The

assembler and linker are discussed in detail in the “MPLAB® Assembler, Linker and

Utilities for PIC24 MCUs and dsPIC® DSCs User’s Guide” (DS51317).

1.2 HIGHLIGHTS

Items discussed in this chapter are:

• Compiler Description and Documentation

• Compiler and Other Development Tools

• Compiler Feature Set

1.3 COMPILER DESCRIPTION AND DOCUMENTATION

There are three Microchip compilers that support various Microchip 16-bit devices.

Also, each one of these compilers comes in different editions, which support different

levels of optimization.

Each compiler is an ANSI x3.159-1989-compliant, optimizing C compiler. Each com-

piler is a Windows® console application that provides a platform for developing C code.

Each compiler is a port of the GCC compiler from the Free Software Foundation.

The first and second compilers include language extensions for dsPIC DSC

embedded-control applications.

MPLAB® C Compiler for Device Support Edition Support

1 PIC24 MCUs and dsPIC® DSCs All 16-bit devices Std, Std Eval

2 dsPIC DSCs dsPIC30F/33F DSCs Std, Std Eval, Lite

3 PIC24 MCUs PIC24F/H MCUs Std, Std Eval, Lite

16-Bit C Compiler User’s Guide

DS51284K-page 14  2002-2011 Microchip Technology Inc.

1.3.1 Compiler Editions

Each of the three compilers in Section 1.3 “Compiler Description and Documenta-

tion” come in one or more of the following editions:

• Standard (Purchased Compiler) – All optimization levels enabled.

• Standard Evaluation (Free) – All optimization levels enabled for 60 days, but then

reverts to optimization level 1 only.

• Lite (Free) – Optimization level 1 only.

1.3.2 Compiler Documented in this Manual

This manual describes the standard edition of the Standard (purchased) compiler,

since the Standard Evaluation and Lite compilers are subsets of the first. Features that

are unique to specific devices, and therefore specific compilers, are noted with “DD”

text the column (see the Preface) and text identifying the devices to which the

information applies.

1.4 COMPILER AND OTHER DEVELOPMENT TOOLS

The MPLAB C Compiler for PIC24 MCUs and dsPIC DSCs compiles C source files,

producing assembly language files. These compiler-generated files are assembled and

linked with other object files and libraries to produce the final application program in

executable COFF or ELF file format. The COFF or ELF file can be loaded into the

MPLAB IDE, where it can be tested and debugged, or the conversion utility can be used

to convert the COFF or ELF file to Intel® hex format, suitable for loading into the com-

mand-line simulator or a device programmer. See Figure 1-1 for an overview of the

software development data flow.

Compiler Overview

 2002-2011 Microchip Technology Inc. DS51284K-page 15

FIGURE 1-1: SOFTWARE DEVELOPMENT TOOLS DATA FLOW

Object File Libraries
(*.a)

Assembler

Linker

C Source Files

(*.c)

C Compiler

Source Files (*.s)

Assembly Source
Files (*.s)

COFF/ELF Object Files
(*.o)

Executable File
(*.exe)

Archiver (Librarian)

Command-Line
Simulator

Compiler

Driver

Program

MPLAB® IDE

Debug Tool

16-Bit C Compiler User’s Guide

DS51284K-page 16  2002-2011 Microchip Technology Inc.

1.5 COMPILER FEATURE SET

The compiler is a full-featured, optimizing compiler that translates standard ANSI C

programs into 16-bit device assembly language source. The compiler also supports

many command-line options and language extensions that allow full access to the

16-bit device hardware capabilities, and affords fine control of the compiler code gen-

erator. This section describes key features of the compiler.

1.5.1 ANSI C Standard

The compiler is a fully validated compiler that conforms to the ANSI C standard as

defined by the ANSI specification and described in Kernighan and Ritchie’s The C Pro-

gramming Language (second edition). The ANSI standard includes extensions to the

original C definition that are now standard features of the language. These extensions

enhance portability and offer increased capability.

1.5.2 Optimization

The compiler uses a set of sophisticated optimization passes that employ many

advanced techniques for generating efficient, compact code from C source. The

optimization passes include high-level optimizations that are applicable to any C code,

as well as 16-bit device-specific optimizations that take advantage of the particular

features of the device architecture.

1.5.3 ANSI Standard Library Support

The compiler is distributed with a complete ANSI C standard library. All library functions

have been validated, and conform to the ANSI C library standard. The library includes

functions for string manipulation, dynamic memory allocation, data conversion, time-

keeping and math functions (trigonometric, exponential and hyperbolic). The standard

I/O functions for file handling are also included, and, as distributed, they support full

access to the host file system using the command-line simulator. The fully functional

source code for the low-level file I/O functions is provided in the compiler distribution,

and may be used as a starting point for applications that require this capability.

1.5.4 Flexible Memory Models

The compiler supports both large and small code and data models. The small code

model takes advantage of more efficient forms of call and branch instructions, while the

small data model supports the use of compact instructions for accessing data in SFR

space.

The compiler supports two models for accessing constant data. The “constants in data”

model uses data memory, which is initialized by the run-time library. The “constants in

code” model uses program memory, which is accessed through the Program Space

Visibility (PSV) window.

1.5.5 Compiler Driver

The compiler includes a powerful command-line driver program. Using the driver

program, application programs can be compiled, assembled and linked in a single step

(see Figure 1-1).

MPLAB® C COMPILER FOR

PIC24 MCUs AND dsPIC® DSCs

USER’S GUIDE

 2002-2011 Microchip Technology Inc. DS51284K-page 17

Chapter 2. Differences Between 16-Bit Device C and ANSI C

2.1 INTRODUCTION

This section discusses the differences between the C language supported by MPLAB

C Compiler for PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30) syntax and the

1989 standard ANSI C.

2.2 HIGHLIGHTS

Items discussed in this chapter are:

• Keyword Differences

• Statement Differences

• Expression Differences

2.3 KEYWORD DIFFERENCES

This section describes the keyword differences between plain ANSI C and the C

accepted by the 16-bit device compiler. The new keywords are part of the base GCC

implementation, and the discussion in this section is based on the standard GCC docu-

mentation, tailored for the specific syntax and semantics of the 16-bit compiler port of

GCC.

• Specifying Attributes of Variables

• Specifying Attributes of Functions

• Inline Functions

• Variables in Specified Registers

• Complex Numbers

• Double-Word Integers

• Referring to a Type with typeof

16-Bit C Compiler User’s Guide

DS51284K-page 18  2002-2011 Microchip Technology Inc.

2.3.1 Specifying Attributes of Variables

The compiler keyword __attribute__ allows you to specify special attributes of

variables or structure fields. This keyword is followed by an attribute specification inside

double parentheses. The following attributes are currently supported for variables:

• address (addr)

• aligned (alignment)

• boot

• deprecated

• eds

• fillupper

• far

• mode (mode)

• near

• noload

• page

• packed

• persistent

• reverse (alignment)

• section ("section-name")

• secure

• sfr (address)

• space (space)

• transparent_union

• unordered

• unused

• weak

You may also specify attributes with __ (double underscore) preceding and following

each keyword (e.g., __aligned__ instead of aligned). This allows you to use them

in header files without being concerned about a possible macro of the same name.

To specify multiple attributes, separate them by commas within the double

parentheses, for example:

 __attribute__ ((aligned (16), packed)).

address (addr)

The address attribute specifies an absolute address for the variable. This attribute

can be used in conjunction with a section attribute. This can be used to start a group

of variables at a specific address:

int foo __attribute__((section("mysection"),address(0x900)));
int bar __attribute__((section("mysection")));
int baz __attribute__((section("mysection")));

A variable with the address attribute cannot be placed into the auto_psv space (see

the space() attribute or the -mconst-in-code option); attempts to do so will cause

a warning and the compiler will place the variable into the PSV space. If the variable is

to be placed into a PSV section, the address should be a program memory address.

Note: It is important to use variable attributes consistently throughout a project.

For example, if a variable is defined in file A with the far attribute, and

declared extern in file B without far, then a link error may result.

Differences Between 16-Bit Device C and ANSI C

 2002-2011 Microchip Technology Inc. DS51284K-page 19

int var __attribute__ ((address(0x800)));

aligned (alignment)

This attribute specifies a minimum alignment for the variable, measured in bytes. The

alignment must be a power of two. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On the

dsPIC DSC device, this could be used in conjunction with an asm expression to access

DSP instructions and addressing modes that require aligned operands.

As in the preceding example, you can explicitly specify the alignment (in bytes) that you

wish the compiler to use for a given variable. Alternatively, you can leave out the

alignment factor and just ask the compiler to align a variable to the maximum useful

alignment for the dsPIC DSC device. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification, the

compiler automatically sets the alignment for the declared variable to the largest

alignment for any data type on the target machine – which in the case of the dsPIC DSC

device is two bytes (one word).

The aligned attribute can only increase the alignment; but you can decrease it by

specifying packed (see below). The aligned attribute conflicts with the reverse

attribute. It is an error condition to specify both.

The aligned attribute can be combined with the section attribute. This will allow the

alignment to take place in a named section. By default, when no section is specified,

the compiler will generate a unique section for the variable. This will provide the linker

with the best opportunity for satisfying the alignment restriction without using internal

padding that may happen if other definitions appear within the same aligned section.

boot

This attribute can be used to define protected variables in Boot Segment (BS) RAM:

int __attribute__((boot)) boot_dat[16];

Variables defined in BS RAM will not be initialized on startup. Therefore all variables in

BS RAM must be initialized using inline code. A diagnostic will be reported if initial

values are specified on a boot variable.

An example of initialization is as follows:

int __attribute__((boot)) time = 0; /* not supported */
int __attribute__((boot)) time2;
void __attribute__((boot)) foo()
{
 time2 = 55; /* initial value must be assigned explicitly */
}

16-Bit C Compiler User’s Guide

DS51284K-page 20  2002-2011 Microchip Technology Inc.

deprecated

The deprecated attribute causes the declaration to which it is attached to be specially

recognized by the compiler. When a deprecated function or variable is used, the

compiler will emit a warning.

A deprecated definition is still defined and, therefore, present in any object file. For

example, compiling the following file:

int __attribute__((__deprecated__)) i;
int main() {
 return i;
}

will produce the warning:

deprecated.c:4: warning: `i’ is deprecated (declared
 at deprecated.c:1)

i is still defined in the resulting object file in the normal way.

eds

In the attribute context the eds, for extended data space, attribute indicates to the com-

piler that the variable will may be allocated anywhere within data memory. Variables

with this attribute will likely also need the __eds__ type qualifier (see Chapter

6. “Additional C Pointer Types”) in order for the compiler to properly generate the

correct access sequence. Note that the __eds__ qualifier and the eds attribute are

closely related, but not identical. On some devices, eds may need to be specified when

allocating variables into certain memory spaces such as space(ymemory) or

space(dma) as this memory may only exist in the extended data space.

fillupper

This attribute can be used to specify the upper byte of a variable stored into a

space(prog) section.

For example:

int foo[26] __attribute__((space(prog),fillupper(0x23))) = { 0xDEAD };

will fill the upper bytes of array foo with 0x23, instead of 0x00. foo[0] will still be

initialized to 0xDEAD.

The command line option -mfillupper=0x23 will perform the same function.

far

The far attribute tells the compiler that the variable will not necessarily be allocated in

near (first 8 KB) data space, (i.e., the variable can be located anywhere in data memory

between 0x0000 and 0x7FFF).

mode (mode)

This attribute specifies the data type for the declaration as whichever type corresponds

to the mode mode. This in effect lets you request an integer or floating point type

according to its width. Valid values for mode are as follows:

Mode Width Compiler Type

QI 8 bits char

HI 16 bits int

SI 32 bits long

DI 64 bits long long

SF 32 bits float

DF 64 bits long double

Differences Between 16-Bit Device C and ANSI C

 2002-2011 Microchip Technology Inc. DS51284K-page 21

This attribute is useful for writing code that is portable across all supported compiler tar-

gets. For example, the following function adds two 32-bit signed integers and returns a

32-bit signed integer result:

typedef int __attribute__((__mode__(SI))) int32;
int32
add32(int32 a, int32 b)
 {
 return(a+b);
 }

You may also specify a mode of byte or __byte__ to indicate the mode correspond-

ing to a one-byte integer, word or __word__ for the mode of a one-word integer, and

pointer or __pointer__ for the mode used to represent pointers.

near

The near attribute tells the compiler that the variable is allocated in near data space

(the first 8 KB of data memory). Such variables can sometimes be accessed more

efficiently than variables not allocated (or not known to be allocated) in near data

space.

int num __attribute__ ((near));

noload

The noload attribute indicates that space should be allocated for the variable, but that

initial values should not be loaded. This attribute could be useful if an application is

designed to load a variable into memory at run time, such as from a serial EEPROM.

int table1[50] __attribute__ ((noload)) = { 0 };

page

The page attribute places variable definitions into a specific page of memory. The page

size depends on the type of memory selected by a space attribute. Objects residing in

RAM will be constrained to a 32K page while objects residing in Flash will be con-

strained to a 64K page (upper byte not included).

unsigned int var[10] __attribute__ ((space(auto_psv)));

The space(auto_psv) or space(psv) attribute will use a single memory page by

default.

__eds__ unsigned int var[10] __attribute__ ((space(eds), page));

When dealing with space(eds), please refer to Chapter 6. “Additional C Pointer

Types” for more information.

packed

The packed attribute specifies that a structure member should have the smallest

possible alignment unless you specify a larger value with the aligned attribute.

Here is a structure in which the member x is packed, so that it immediately follows a,

with no padding for alignment:

struct foo
{
char a;
int x[2] __attribute__ ((packed));
};

Note: The device architecture requires that words be aligned on even byte

boundaries, so care must be taken when using the packed attribute to

avoid run-time addressing errors.

16-Bit C Compiler User’s Guide

DS51284K-page 22  2002-2011 Microchip Technology Inc.

persistent

The persistent attribute specifies that the variable should not be initialized or

cleared at startup. A variable with the persistent attribute could be used to store state

information that will remain valid after a device reset.

int last_mode __attribute__ ((persistent));

Persistent data is not normally initialized by the C run-time. However, from a

cold-restart, persistent data may not have any meaningful value. This code example

shows how to safely initialize such data:

#include "p24Fxxxx.h"

int last_mode __attribute__((persistent));

int main()
{
 if ((RCONbits.POR == 0) &&
 (RCONbits.BOR == 0)) {
 /* last_mode is valid */
 } else {
 /* initialize persistent data */
 last_mode = 0;
 }
}

reverse (alignment)

The reverse attribute specifies a minimum alignment for the ending address of a

variable, plus one. The alignment is specified in bytes and must be a power of two.

Reverse-aligned variables can be used for decrementing modulo buffers in dsPIC DSC

assembly language. This attribute could be useful if an application defines variables in

C that will be accessed from assembly language.

int buf1[128] __attribute__ ((reverse(256)));

The reverse attribute conflicts with the aligned and section attributes. An attempt

to name a section for a reverse-aligned variable will be ignored with a warning. It is an

error condition to specify both reverse and aligned for the same variable. A variable

with the reverse attribute cannot be placed into the auto_psv space (see the

space() attribute or the -mconst-in-code option); attempts to do so will cause a

warning and the compiler will place the variable into the PSV space.

section ("section-name")

By default, the compiler places the objects it generates in sections such as .data and

.bss. The section attribute allows you to override this behavior by specifying that a

variable (or function) lives in a particular section.

struct a { int i[32]; };
struct a buf __attribute__((section("userdata"))) = {{0}};

secure

This attribute can be used to define protected variables in Secure Segment (SS) RAM:

int __attribute__((secure)) secure_dat[16];

Variables defined in SS RAM will not be initialized on startup. Therefore all variables in

SS RAM must be initialized using inline code. A diagnostic will be reported if initial

values are specified on a secure variable.

Differences Between 16-Bit Device C and ANSI C

 2002-2011 Microchip Technology Inc. DS51284K-page 23

String literals can be assigned to secure variables using inline code, but they require

extra processing by the compiler. For example:

char *msg __attribute__((secure)) = "Hello!\n"; /* not supported */
char *msg2 __attribute__((secure));
void __attribute__((secure)) foo2()
{
 msg2 = "Goodbye..\n"; / value assigned explicitly */
}

In this case, storage must be allocated for the string literal in a memory space which is

accessible to the enclosing secure function. The compiler will allocate the string in a

psv constant section designated for the secure segment.

sfr (address)

The sfr attribute tells the compiler that the variable is an SFR and also specifies the

run-time address of the variable, using the address parameter.

extern volatile int __attribute__ ((sfr(0x200)))u1mod;

The use of the extern specifier is required in order to not produce an error.

space (space)

Normally, the compiler allocates variables in general data space. The space attribute

can be used to direct the compiler to allocate a variable in specific memory spaces.

Memory spaces are discussed further in Section 4.5 “Memory Spaces”. The

following arguments to the space attribute are accepted:

data

Allocate the variable in general data space. Variables in general data space can

be accessed using ordinary C statements. This is the default allocation.

eds

Allocate the variable in the extended data space. For devices that do not have

extended data space, this is equivalent to space(data). Variables in

space(eds) will generally require special handling to access. Refer to Chapter

6. “Additional C Pointer Types” for more information.

space(eds) has been deprecated in favour of the eds attribute.

xmemory - dsPIC30F/33F DSCs only

Allocate the variable in X data space. Variables in X data space can be accessed

using ordinary C statements. An example of xmemory space allocation is:

int x[32] __attribute__ ((space(xmemory)));

ymemory - dsPIC30F/33F DSCs only

Allocate the variable in Y data space. Variables in Y data space can be accessed

using ordinary C statements. An example of ymemory space allocation is:

int y[32] __attribute__ ((space(ymemory)));

Note: By convention, the sfr attribute is used only in processor header files. To

define a general user variable at a specific address use the address attri-

bute in conjunction with near or far to specify the correct addressing

mode.

DD

DD

16-Bit C Compiler User’s Guide

DS51284K-page 24  2002-2011 Microchip Technology Inc.

prog

Allocate the variable in program space, in a section designated for executable

code. Variables in program space can not be accessed using ordinary C

statements. They must be explicitly accessed by the programmer, usually using

table-access inline assembly instructions, or using the program space visibility

window.

auto_psv

Allocate the variable in program space, in a compiler-managed section

designated for automatic program space visibility window access. Variables in

auto_psv space can be read (but not written) using ordinary C statements, and

are subject to a maximum of 32K total space allocated. When specifying

space(auto_psv), it is not possible to assign a section name using the sec-
tion attribute; any section name will be ignored with a warning. A variable in the

auto_psv space cannot be placed at a specific address or given a reverse

alignment.

dma - PIC24H MCUs, dsPIC33F DSCs only

Allocate the variable in DMA memory. Variables in DMA memory can be

accessed using ordinary C statements and by the DMA peripheral.

__builtin_dmaoffset() (see Appendix B. “Built-in Functions”) can be

used to find the correct offset for configuring the DMA peripheral.

 #include <p24Hxxxx.h>
 unsigned int BufferA[8] __attribute__((space(dma)));
 unsigned int BufferB[8] __attribute__((space(dma)));

 int main()
 {
 DMA1STA = __builtin_dmaoffset(BufferA);
 DMA1STB = __builtin_dmaoffset(BufferB);
 /* ... */
 }

psv

Allocate the variable in program space, in a section designated for program space

visibility window access. The linker will locate the section so that the entire vari-

able can be accessed using a single setting of the PSVPAG register. Variables in

PSV space are not managed by the compiler and can not be accessed using ordi-

nary C statements. They must be explicitly accessed by the programmer, usually

using table-access inline assembly instructions, or using the program space

visibility window.

eedata - PIC24F, dsPIC30F/33F DSCs only

Allocate the variable in EEData space. Variables in EEData space can not be

accessed using ordinary C statements. They must be explicitly accessed by the

programmer, usually using table-access inline assembly instructions, or using

the program space visibility window.

pmp

Allocate the variable in off chip memory associated with the PMP peripheral. For

complete details please see Section 6.3 “PMP Pointers”.

Note: Variables placed in the auto_psv section are not loaded into data

memory at startup. This attribute may be useful for reducing RAM

usage.

DD

DD

Differences Between 16-Bit Device C and ANSI C

 2002-2011 Microchip Technology Inc. DS51284K-page 25

external

Allocate the variable in a user defined memory space. For complete details

please see Section 6.4 “External Pointers”.

transparent_union

This attribute, attached to a function parameter which is a union, means that the

corresponding argument may have the type of any union member, but the argument is

passed as if its type were that of the first union member. The argument is passed to the

function using the calling conventions of the first member of the transparent union, not

the calling conventions of the union itself. All members of the union must have the same

machine representation; this is necessary for this argument passing to work properly.

unordered

The unordered attribute indicates that the placement of this variable may move

relative to other variables within the current C source file.

const int __attribute__ ((unordered)) i;

unused

This attribute, attached to a variable, means that the variable is meant to be possibly

unused. The compiler will not produce an unused variable warning for this variable.

weak

The weak attribute causes the declaration to be emitted as a weak symbol. A weak

symbol may be superseded by a global definition. When weak is applied to a reference

to an external symbol, the symbol is not required for linking. For example:

extern int __attribute__((__weak__)) s;
int foo() {
 if (&s) return s;
 return 0; /* possibly some other value */
}

In the above program, if s is not defined by some other module, the program will still

link but s will not be given an address. The conditional verifies that s has been defined

(and returns its value if it has). Otherwise ‘0’ is returned. There are many uses for this

feature, mostly to provide generic code that can link with an optional library.

The weak attribute may be applied to functions as well as variables:

extern int __attribute__((__weak__)) compress_data(void *buf);
int process(void *buf) {
 if (compress_data) {
 if (compress_data(buf) == -1) /* error */
 }
 /* process buf */
}

In the above code, the function compress_data will be used only if it is linked in from

some other module. Deciding whether or not to use the feature becomes a link-time

decision, not a compile time decision.

	Contact us
	MPLAB C Compiler for PIC24 MCUs and dsPIC DSCs User’s Guide
	Table of Contents
	Preface
	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Highlights
	1.3 Compiler Description and Documentation
	1.4 Compiler and Other Development Tools
	1.5 Compiler Feature Set

	Chapter 2. Differences Between 16-Bit Device C and ANSI C
	2.1 Introduction
	2.2 Highlights
	2.3 Keyword Differences

