ghipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution
of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business
relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components
to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business
mainly focus on the distribution of electronic components. Line cards we deal with include
Microchip,ALPS,ROHM, Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise
IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,
and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service
and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email & Skype: info@chipsmall.com Web: www.chipsmall.com
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

iy [0

N

MICROCHIP

MPLAB® XC16 C Compiler

User’s Guide

© 2012 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= 1SO/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KeeLoq, KEeLoa logo, MPLAB, PIC, PICmicro, PICSTART,
PIC®2 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT,
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,
MPLINK, mTouch, Omniscient Code Generation, PICC,
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,
rfLAB, Select Mode, Total Endurance, TSHARC,
UniWinDriver, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2012, Microchip Technology Incorporated, Printed in the
U.S.A,, All Rights Reserved.

‘::) Printed on recycled paper.

ISBN: 978-1-62076-467-1

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS52071B-page 2

© 2012 Microchip Technology Inc.

MPLAB® XC16 C COMPILER
MICROCHIP USER’S GUIDE

Table of Contents
1= Vo= 11
Chapter 1. Compiler Overview
1.1 INEOAUCTION .. 17
1.2 DeViCe DESCIIPLION ...uiiiiiiiieiit e e e 17
1.3 Compiler Description and Documentationcccoccveveriiiieeiinieee e 17
1.3.1 ANSI C Standardc.cooeeiiiiiiee e e e e a e e a e e e 17
1.3.2 OPtMIZALION ...t e e 17
1.3.3 ANSI Standard Library SUPPOITcooiiiiiiiiiie e 18
1.3.4 Flexible Memory MOdElScocuiiiiiiiiiiiiiiieee e 18
1.3.5 Attributes and QUAlIfiersocueviiii i 18
1.3.6 COMPIIET DIVEL ..t e e e 18
LG T Lo Tor U144 T=T o €= 11 [o TSRS 18
1.4 Compiler and Other Development TOOISccoeiiiiiiiiiie e 19
Chapter 2. Common C Interface
P2 1 0o [T 1o o PP 21
2.2 Background — The Desire for Portable Codeccccoeiiiiiiiiiiiiiiiiieeeee, 21
2.2.1 The ANSI Standardcoooiiiiiiiiieie e 22
2.2.2 The Common C INtEIfACEcccoicviiieieciiiie e 23
2.3 USING The CCl ... e 24
2.4 ANSI Standard Refinement ... 25
2.4.1 Source File ENCOING ..ciiiuiiiiiiiieeiieeiiee et 25
2.4.2 The Prototype fOor Mainooioiiiiei e 25
2.4.3 Header File SpecCificationcccoceiiiiiiiiiiii e 25
2.4.4 Include Search Paths ... 26
2.4.5 The number of Significant Initial Characters in an Identifier 27
2.4.6 SiZES Of TYPES eeneiieiiiii ettt e e e enee e st e e e s ee e e e e e neeens 27
2.4.7 Plain Char TYPES ..ttt e 28
2.4.8 Signed Integer Representationcccoo i iiii e 28
2.4.9 INtEQYET CONVEISION ..eouviiiiiiiieiteee ettt ettt ettt e e 29
2.4.10 Bit-wise Operations on Signed Valuesccccoceeiiiiieiiiee i 29
2.4.11 Right-shifting Signed Valuesc.cccoiiiiiiiiiiiii e 29
2.4.12 Conversion of Union Member Accessed Using Member
With Different TYPEeeeiiiieeiee e 30
2.4.13 Default Bit-field int TYPEoooiiieiiiie e 30
2.4.14 Bit-fields Straddling a Storage Unit Boundarycccccoeioeeiiiieniieenneenne 31
2.4.15 The Allocation Order of Bits-fieldcocvviriiiiiiie e 31
2.4.16 The NULL MACIO ..eoiutiiiiiiie ittt ettt 32
2.4.17 Floating-poiNt SIZEScooviiiiiiieiieeeriie e 32

© 2012 Microchip Technology Inc. DS52071B-page 3

MPLAB® XC16 C Compiler User’s Guide

2.5 ANSI Standard EXIENSIONScccuuiiiiiiee et e e e e e 33
2.5.1 Generic Header File ..o 33
2.5.2 Absolute addreSSiNgGc.eeeicieieiiiee i 33
2.5.3 Far Objects and FUNCHONSccooiiiiiiiieccee e 34
2.5.4 NEar ODJECLSuviiiiiiieiiie et 35
2.5.5 Persistent ODJECESooiiiiiiiiiie e 36
2.5.6 X and Y Data ODJECESeeeiiiieiiiieiiee et 37
2.5.7 Banked Data ObJECLScciiiieiiiiieiiee et 37
2.5.8 Alignment of ODJECESeeeiiiiiiiee e 38
2.5.9 EEPROM ODJECES ...oiuvieiiiiiiiieiiieiee ettt e 39
2.5.10 Interrupt FUNCHONS ...o.viiiiiieeeeee e 39
2.5.11 Packing ODJECLSeeeiiiieiiiie ettt 42
2.5.12 Indicating Antiquated ObJECLSccceiiiiiiieiie e 43
2.5.13 Assigning Objects 10 SECHONSccceiiiiiieiie e 43
2.5.14 Specifying Configuration BitScccciiiiiiiiiiiie e 45
2.5.15 Manifest MACIOSccoiiiiiiiie i 46
2.5.16 IN-liNe ASSEMDIY ...ooiiiiiiiii e 47
2.6 Compiler FEAUIESueiiiiiieee e e 48
2.6.1 Enabling the CClooi i 48
Chapter 3. Compiler Command-Line Driver
BT INErOAUCHION ..o e et e e e e e eeeees 49
3.2 Invoking the COMPIIETviiiiee e 50
3.2.1 Drive Command-Line FOrmatcccovuiiiiiiiiiieeee e 50
3.2.2 Environment Variables ... 50
B.2.3 INPUL FlE TYPES ettt et 51
3.3 The Compilation SEQUENCEoeiiiiiiiieii e 52
3.3.1 The Compiler AppliCationSceeeriiieiiiee i 52
3.3.2 Single-Step Compilation ... 54
3.3.3 Multi-Step Compilationcoei e 55
3.3.4 Assembly Compilationcccooiiieiiiei e 56
3.4 RUNLIME FlES ..o 57
B.4.1 LIDrary FleS ..ot 57
3.4.2 Startup and INitializationccoeroriiie e 57
3.5 Compiler OQUEPUL ... 58
3.5.1 OULPUL FIlES e 58
3.5.2 DIiagnOStiC FleSeeiiiiiiiiiie e 58
3.6 COMPIIEr MESSAYES ...eeeeeiiiieie ettt e e neee s 59

DS52071B-page 4 © 2012 Microchip Technology Inc.

Table of Contents

3.7 Driver Option DESCIIPHONSciiiiiiiieiiiiiee e 60
3.7.1 Options Specific t0 16-Bit DEVICESeeeiiiiieiiieiiiee e 60
3.7.2 Options for Controlling the Kind of Qutputocoeeiiiiiiieeee 62
3.7.3 Options for Controlling the C Dialectcccocveiiiiiiiiiiei e 63
3.7.4 Options for Controlling Warnings and Errorscccoceveiieienieenieneiiiees 64
3.7.5 Options fOr DEDUGGING «oeueeeeiieeeiieeeeiee et e e e 70
3.7.6 Options for Controlling Optimizationcccccoiiiiier i 71
3.7.7 Options for Controlling the PreproCessoroococeveireiiiienieeree e 76
3.7.8 Options for ASSEMDIINGoviiiiiiiiiieie e 79
3.7.9 Options fOr LINKINGoeeiiiiiiiiiiee et 79
3.7.10 Options for Directory S€archccccooiiieiiiieiiiee e 82
3.7.11 Options for Code Generation Conventionsccccceeeeeciieeeeeciieeeceeene, 82
3.8 MPLAB IDE Toolsuite EQUIVaIENTSc.eeiiiiiiiiiieee e 83
Chapter 4. Device-Related Features
o T 1 0 [T o PP 85
4.2 DEVICE SUPPOM ...ttt ettt e s e e e nnne e e e ennes 85
4.3 Device Header FIles ... eeneees 85
4.3.1 Register Definition Files ... 85
4.4 SEACK ..o 86
4.5 Configuration Bit ACCESSuuiiiiiiiiiiiiiiie e 86
4.6 USING SFRS .o 87
4.7 Bit-Reversed and Modulo ADAreSSiNgooccueeeeeeieeiiniiiiieeee e 89
Chapter 5. Differences Between MPLAB XC16 and ANSI C
5.1 Divergence from the ANSI C Standardcccceiimieiiniiiiiiieceee e 91
5.2 Extensions to the ANSI C Standardccooociieeiiiiieee e 91
5.2.1 Keyword DifferenCeScvviiiiiiiiiiiiiie e 91
5.2.2 Expression DIifferencescccooiiiiiiieiiie e 91
5.3 Implementation-Defined Behavior ... 91
Chapter 6. Supported Data Types and Variables
6.1 INFOAUCTION ..o 93
L2 (o =T 0 11T PP 93
6.3 Integer Data TYPES ..ooueeeieiiiie e 94
6.3.1 Double-Word INtEJErSc..eiiiiiieiie e 94
B.3.2 CHAY TYPES .ttt 95
6.4 Floating-Point Data TYPESeeeiiiiiiiiiiiiie e 95
6.5 Structures and UNIONSeiiiiiiiieiiieee e 96
6.5.1 Structure and Union QUAlIfIErsoocviiioiiiiiiee e 96
6.5.2 Bit-Fields in StrUCIUIESooiiiieeie e 96
6.6 POINTEN TYPES .. 98
6.6.1 Combining Type Qualifiers and Pointersccoooceiiiiieiiieiiieeeee e 98
oI 2 DT = W o[0] (= 99
6.6.3 FUNCLION POINTEIS ... 99
6.6.4 Special Pointer Targets ..o 99
6.7 ComplexX Data TYPES ..ueeeeeiiiiiieeeieee ettt 100
6.8 Literal Constant Types and FOrmatsccoocviriiiiiiiniieceeee e 101

© 2012 Microchip Technology Inc.

DS52071B-page 5

MPLAB® XC16 C Compiler User’s Guide

6.9 Standard Type QUAlIfIErsSccueiiiiiiiiee e 103
6.9.1 Const Type QUAlIfIErooiiiee e 103
6.9.2 Volatile Type QUAlIfierooouiiiiie e 103
6.10 Compiler-Specific type Qualifierscoocueieeiiiiiiie e 104
6.10.1 __psv__ Type QUAlIfIEreeeiiieeie e 104
6.10.2 __prog__ Type QUAlIfIErooiiieieeee e 104
6.10.3 __eds_ Type QUANIfIErcoviiuiiiiiiieii e 105
6.10.4 _ pack_upper_byte Type Qualifiercccocviiiiiiiieiiiiieeecee e 105
6.10.5__pmp__ Type QUAlIfIENoeveiiiiiieiee e 105
6.10.6 __external__ Type QUalifiercoociiiiiiee e 106
6.11 Variable AHINDULEScooiiiiiie e 107
Chapter 7. Memory Allocation and Access
7485 T 121 To [T { o] o 1 117
7.2 AAAreSS SPACESvviiiiiiiiiee ettt 117
7.3 Variables in Data Space MemOry ..o 118
7.3.1 Non-Auto Variable Allocation and ACCESSocuveeeiiiiiieeeiiiiieee e 118
7.3.2 Auto Variable Allocation and ACCESSccceeriirieiiieeiiiiieseee e 121
7.3.3 Changing Auto Variable AlloCationcccvviiiieiiiiieiieeeceeee e 124
7.4 Variables in Program SPacCecoocuuiiiiiiiiiieiiiie et 125
7.4.1 Allocation and Access of Program Memory Objectsccocoeeiieereieenne 125
7.4.2 Access of objects in Program Memorycccccveeriieeiiieieniee e 127
7.4.3 Size Limitations of Program Memory Variablesccccccooviiiiiiiinieees 128
7.4.4 Changing Program Memory Variable Allocationccccceveviiiviiinnennne. 129
7.5 Parallel Master Port ACCESScooouiiiieiiiiiiiicc 130
7.5.1 INIHANZE PMP ..t 130
7.5.2 Declare a New Memory SPacecceovcueieiiieiiniiie ittt 131
7.5.3 Define Variables within PMP Spaceccccociiiiiiiieiiiieieceeee e 131
7.6 External Memory ACCESSooccueiiiiieie ettt 132
7.6.1 Declare a New Memory SPaceccccocceieiieiiiiiie et 132
7.6.2 Define Variables Within an External Spaceccccccveieeiieiiiieeciieeee 132
7.6.3 Define How to Access Memory SPacesccocveveveeiiieeienieeenieeeniee e 133
7.6.4 An External EXamPpPle ..o 135
7.7 Extended Data Space ACCESS ...ccoiiuiiiiiiiiiiie ettt 136
7.8 Packing Data Stored in FIash ... 137
7.8.1 Packed EXamPIE ...cooiiiiiiiiiiiie e 137
7.8.2 Usage CoNnSiderationscccoeieeeiuiieiiee et ee e ee e emeee e 137
7.8.3 Addressing INformationcoccueeeiiiiiiiieee e 138
7.9 Allocation of Variables t0 RegiSters ... 139
7.10 Variables in EEPROM ..o 139
7.10.1 Accessing EEDATA via User Managed PSVccccooiiiiiiieciiineee 139
7.10.2 Accessing EEDATA Using TBLRDxX Instructionsccccceeevevieineennne 140
7.10.3 Accessing EEDATA Using Managed ACCESSccovvivieeeiiiiieeeeniiieeeeee 141
7.10.4 Additional Sources of Informationcoococieiiiiiiiii e 141
7.11 Dynamic Memory AOCAIONccuiiiiiiiiie i 141
712 MemOry MOTEIS ... 142
7.12.1 Near or Far Dataoc.eeeeiiiiiiiee e 143

DS52071B-page 6 © 2012 Microchip Technology Inc.

Table of Contents

Chapter 8. Operators and Statements

o 70 I V0 (0o [0 T 1o 145
8.2 BUilt-IN FUNCHIONS ..o 145
8.3 Integral Promotionoooiiiiiieie e 145
Chapter 9. Register Usage
L I I) 10 o [8 T3 110] o R 147
9.2 Register Variables ... 147
9.3 Changing Register CONteNtSc.eeiiiiiiiiiiiiie e 148
Chapter 10. Functions

10.1 INtrodUCHiON ... s 149
10.2 Wrting FUNCLIONS ...t 149

10.2.1 FUNCLION SPECIfIErS ..ouviiiiiiiiiieee e 149

10.2.2 FUNCHion AHINDULES ..eeveeieeeeeece e 149
10.3 FUNCLION SiZE LIMIES ..eiieiiiiiieee e e s 156
10.4 Allocation of FUNCtion COdEcccooieiiiiiiciciccc s 156
10.5 Changing the Default Function Allocationcccccoeeeeieiiiiiiiiieeee e 157
10.6 INline FUNCLIONS ..o 158
10.7 MemMOry MOGEIS ... 159

10.7.1 Near or Far COUEoooviiiiiiiiieee e 160
10.8 Function Call Conventionscccccoiiiiiiiiiiiiccc s 161

10.8.1 Function Parametersuuuuccciiieieie e 161

10.8.2 REtUIN ValUE ..ot 163

10.8.3 Preserving Registers Across Function Callsccccccevviiiiieiiiieeenen. 163

Chapter 11. Interrupts

111 INErOAUCTION .o 165
11.2 Interrupt OPerationooo i 166
11.3 Writing an Interrupt Service ROUtINGcoooiiiiiiiiiiiiii e 166
11.3.1 Guidelines for Writing ISRSooiiiiie e 166
11.3.2 Syntax for Writing ISRSooiiiiiee e 167
11.3.3 CodiNG ISRS ... 167
11.3.4 Using Macros to Declare Simple ISRScocooviiiiiiiieeee e 168
11.4 Specifying the Interrupt VECtor ... 169
11.4.1 Non-SMPS dsPIC30F DSCs Interrupt Vectorsccccoveeieeiicnecnieenee 170
11.4.2 SMPS dsPIC30F DSCs Interrupt VECtorscccoceviiiviinieiiiiee e 172
11.4.3 PIC24F MCUs Interrupt VECIOrScccvevviiiiiiiiiiiiiieeeee e 174
11.4.4 dsPIC33F DSCs/PIC24H MCUs Interrupt Vectorsccccevveeriiieeenee 177
11.5 Interrupt Service Routine Context Saving ..o 180
11.6 Nesting INterruptsS ..o e 180
11.7 Enabling/Disabling INterrupts ... 181
11.8 ISR CONSIAEratiONSeeeiiiiiiiiieii e 182
11.8.1 Sharing Memory with Mainline Codeccoccoiiiiiiiiiieeeeeee e 182
11.8.2 PSV Usage with Interrupt Service Routinesccccococveiiiniiiienieee. 186
11.8.83 LAIENCY -eeeieiiiiiiiie e 186

© 2012 Microchip Technology Inc. DS52071B-page 7

MPLAB® XC16 C Compiler User’s Guide

Chapter 12. Main, Runtime Startup and Reset

12,1 INTrOAUCTION ..o 187
12.2 The Main FUNCHONuuiiiiiiiiiiiiieei e e eeee e eeeees 187
12.3 Runtime Startup and Initialization ... 187
Chapter 13. Mixing C and Assembly Code
3G T8 B 10T U] 1T o 189
13.2 Mixing Assembly Language and C Variables and Functions 189
13.3 Using Inline Assembly Languageccccooiiimiiiiiiiiiceee e 192
13.4 Predefined Assembly Macrosocceiiiiiiiieiinic e 196

Chapter 14. Library Routines
Chapter 15. Optimizations

8T8 B 10T U] 1T o 199
Chapter 16. Preprocessing
16.1 INTrOAUCTION .. 201
16.2 C Language COMMENTSuuiiiiiiiiiieeeieie e 201
16.3 Preprocessing DIreCHVESoooiiiiiiiiiiie e 201
16.4 Predefined Macro NamEScooiiiiiiiiiie e 202
16.4.1 Compiler Version Macroc.ooceeiiiiiriiieiiiee e 202
16.4.2 Output TYPES MACTOSeeiiiiiieeeiie et 203
16.4.3 Target DeVIiCe MACIOSccoiiiuiiiiiiiiiieee et 203
16.4.4 Device Features MaCIOSc..ouiiiiiiiiiiiiiiiieee et 203
16.4.5 Other MACIOSeiiiiiieeiiie ettt e e e e as 204
16.5 Pragmas vs. AHMNDULESoceeiiiiiece e 205
Chapter 17. Linking Programs
L% T 10T [U] 1T o 207
17.2 Default Memory SPacCESoooiiiiiiiiiiiiee e 207
17.3 Replacing Library SYmbOISc.eoeiiiiiiiiiee e 209
17.4 Linker-Defined SymbOISoooiiiiiiiie e 209
17.5 Default LINKEr SCHPLooiieeee et 210

DS52071B-page 8 © 2012 Microchip Technology Inc.

Table of Contents

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Implementation-Defined Behavior

F AN I [V £ o [U T3 1o o R 211
YN I =Yg 1< F= o] o H PR 212
LN B = 01V T (o] 10 0= o | AU 212
F N To =T 0] (11T = PR 213
F AN @] o b= = (o (=] £ TR 213
LN R g1 (=T [T € TP PPPP P OPPPPPRRPPP 214
A.7 Floating PoOiNto 215
A8 Arrays and POINTEISoooiiiiiiiiiiiiie et 215
AL REQISIEIS ...t 216
A.10 Structures, Unions, Enumerations and Bit Fieldscccccceeeviviiiiiiiinnnee. 216
LN I O TN = 11 1= RS 216
F N B2 D L= Yo] = 1= (o] N 216
FN B S =\ (=] 41T 1 TR 217
A.14 Preprocessing DIreCHVESueiiiiiiiiiiiiiii e 217
A 15 Library FUNCHONS ...t 218
ALTB SIGNAIS i e ne e e 219
A.17 Streams and FilEScovvviiiie et a e 220
AAB IMPAIIE e e e e e 221
LN =Y g ¢ o TP 221
AL20 MEMOIY ettt e et e e e e e e e r e e e e e e e e nnnnee 221
F N2 I o o o A 221
N2 = (| 221
A28 GEIENV .o 221
A2 SYSTEIM e e e e e e 221
F N2 ST 1 (=11 (o] U 222
Diagnostics

= 70 I [0 0T 18 [[0 o [223
2 o {0 T 223
B.3 WAININGS ..ot e e 242
GNU Free Documentation License

(O I o (= T= 10 0] o] L= R 263
C.2 Applicability and DefinitionNscoooiiieiiiiiiiiee e 263
C.3 Verbatim COPYiNG ...ccveeeeiiiiiie e 265
C.4 Copying in QUANTILYeeieiiiiiie et 265
(ORI 1Y (oo [1io7=1 1o o I 266
C.6 Combining DOCUMENESeiiiiiiiiii e 267
C.7 Collections of DOCUMENTSiiiiiiiiiiiiiei e ceee et e e e e e e e e e e e e eeees 267
C.8 Aggregation with Independent WOrKScccceoiiiiiiiiiiiiieeeeee e 267
(O3S I I = [0 11 =1 1o o I 268
(O O I =1 0 o110 = (o] o 268
C.11 Future Revisions of this LICENSEuuuieiiiiiiiieeeeeeeee e 268
C.12 REIICENSING ettt 269
ASCII Character Setcccciiiiiirrr s nmna e 271

© 2012 Microchip Technology Inc. DS52071B-page 9

MPLAB® XC16 C Compiler User’s Guide

Appendix E. Deprecated Features

= I 1o o 11 T3 1o o SRR 273
E.2 Predefined ConStantscooiiiiiiiiiiiiiice e 273
E.3 Variables in Specified RegiSters ... 274
E.3.1 Defining Global Register Variablesccccooooiiiiiiiiiieieieeeee e 274
E.3.2 Specifying Registers for Local Variablesc.ccccoiiiiiiiiiiiniiieieeee, 275
E.4 Changing Non-Auto Variable Allocationccccuueieiieeeiiiiiieeee e, 275
Appendix F. Built-in Functions
| I 01 oo [T 1o o SR URPPPIN 277
F.2 Built-In Function DesCrPtioNSviiiiiiiiee e 279
Appendix G. XC16 Configuration Settings
(0 I a1 (o o (U731 o RSP 305
€] oL T 307
3T [327
Worldwide Sales and ServiCe ..o 338

DS52071B-page 10 © 2012 Microchip Technology Inc.

MPLAB® XC16 C COMPILER
MICROCHIP USER’S GUIDE

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documenta-
tion are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions
may differ from those in this document.

For the most up-to-date information on development tools, see the MPLAB® IDE or MPLAB X IDE
Help. Select the Help menu and then “Topics” or “Help Contents” to open a list of available Help files.

For the most current PDFs, please refer to our web site (http://www.microchip.com). Documents are
identified by “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of
the document. This number is located on the bottom of each page, in front of the page number.

INTRODUCTION

MPLAB XC16 C Compiler documentation and support information is discussed in the
sections below:

» Document Layout

» Conventions Used

* Recommended Reading

» myMicrochip Personalized Notification Service

» The Microchip Web Site

+ Microchip Forums

» Customer Support

© 2012 Microchip Technology Inc. DS52071B-page 11

MPLAB® XC16 C Compiler User’s Guide

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:

+ Chapter 1. “Compiler Overview” — describes the compiler, development tools
and feature set.

» Chapter 3. “Compiler Command-Line Driver” — describes how to use the
compiler from the command line.

» Chapter 5. “Differences Between MPLAB XC16 and ANSI C” — describes the
differences between the C language supported by the compiler syntax and the
standard ANSI-89 C.

» Chapter 4. “Device-Related Features” — describes the compiler header and
register definition files, as well as how to use with SFRs.

» Chapter 6. “Supported Data Types and Variables” — describes the compiler
integer, floating point and pointer data types.

» Chapter 7. “Memory Allocation and Access” — describes the compiler run-time
model, including information on sections, initialization, memory models, the
software stack and much more.

+ Chapter 8. “Operators and Statements” — discusses operators and statements.
» Chapter 9. “Register Usage” — explains how to access and use SFRs.

» Chapter 10. “Functions” — details available functions.

» Chapter 11. “Interrupts” — describes how to use interrupts.

» Chapter 12. “Main, Runtime Startup and Reset” — describes important
elements of C code.

» Chapter 14. “Library Routines” — explains how to use libraries.

+ Chapter 13. “Mixing C and Assembly Code” — provides guidelines to using the
compiler with 16-bit assembly language modules.

+ Chapter 15. “Optimizations” — describes optimization options.
» Chapter 16. “Preprocessing” — details preprocessing operation.
» Chapter 17. “Linking Programs” — explains how linking works.

» Appendix A. “Implementation-Defined Behavior” — details compiler-specific
parameters described as implementation-defined in the ANSI standard.

» Appendix B. “Diagnostics” — lists error and warning messages generated by
the compiler.

+ Appendix C. “MPLAB XC16 vs. MPLAB XC8” — contains the ASCII character
set.

+ Appendix C. “GNU Free Documentation License” — usage license for the Free
Software Foundation.

» Appendix E. “Deprecated Features” — details features that are considered
obsolete.

» Appendix F. “Built-in Functions” — lists the built-in functions of the C compiler.

» Appendix G. “XC16 Configuration Settings” — information about configuration
settings macros.

DS52071B-page 12 © 2012 Microchip Technology Inc.

Preface

CONVENTIONS USED

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description Represents Examples
Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text

...is the only compiler...

dialog

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

A tab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START
File names autoexec.bat
File paths c:\mccl8\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants OxFF, 'A’
Italic Courier A variable argument file.c,where file can be

any valid file name

Square brackets []

Optional arguments

mpasmwin [options]
file [options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {01}

Ellipses... Replaces repeated text var_name [,
var_name...]
Represents code supplied by |void main (void)
user {
}
Sidebar Text

Device Dependent.

This feature is not supported
on all devices. Devices sup-
ported will be listed in the title
or text.

xmemory attribute

© 2012 Microchip Technology Inc.

DS52071B-page 13

MPLAB® XC16 C Compiler User’s Guide

RECOMMENDED READING

This documentation describes how to use the MPLAB XC16 C Compiler. Other useful
documents are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.

Release Notes (Readme Files)

For the latest information on Microchip tools, read the associated Release Notes
(HTML files) included with the software.

MPLAB® Assembler, Linker and Utilities for PIC24 MCUs and dsPIC® DSCs
User’s Guide (DS51317)

A guide to using the 16-bit assembler, object linker, object archiver/librarian and various
utilities.

16-Bit Language Tools Libraries (DS51456)

A descriptive listing of libraries available for Microchip 16-bit devices. This includes
standard (including math) libraries and C compiler built-in functions. DSP and 16-bit

peripheral libraries are described in Release Notes provided with each peripheral
library type.

Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions
and features. Among these are:

* Individual and family data sheets

» Family reference manuals

* Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems — Programming Language — C.

American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

DS52071B-page 14 © 2012 Microchip Technology Inc.

Preface

myMICROCHIP PERSONALIZED NOTIFICATION SERVICE

Microchip's personal notification service helps keep customers current on their
Microchip products of interest. Subscribers will receive e-mail notification whenever
there are changes, updates, revisions or errata related to a specified product family or
development tool.

Please visit http://www.microchip.com/pcn to begin the registration process and select
your preferences to receive personalized notifications. A FAQ and registration details
are available on the page, which can be opened by selecting the link above.

When you are selecting your preferences, choosing “Development Systems” will pop-
ulate the list with available development tools. The main categories of tools are listed
below:

+ Compilers — The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembiler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

+ Emulators — The latest information on Microchip in-circuit emulators.These
include the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators

+ In-Circuit Debuggers — The latest information on Microchip in-circuit debuggers.
These include the MPLAB ICD 2 and 3 in-circuit debuggers and PICkit™ 2 and 3
debug express.

- MPLAB® IDE/MPLAB X IDE — The latest information on Microchip MPLAB IDE,
the Windows® Integrated Development Environment, or MPLAB X IDE, the open
source, cross-platform Integrated Development Environment. These lists focus on
the IDE, Project Manager, Editor and Simulator, as well as general editing and
debugging features.

* Programmers — The latest information on Microchip programmers. These include
the device (production) programmers MPLAB REAL ICE in-circuit emulator,
MPLAB ICD 3 in-circuit debugger, MPLAB PM3 and development (nonproduction)
programmers MPLAB ICD 2 in-circuit debugger, PICSTART® Plus and PICkit 2
and 3.

 Starter/Demo Boards — These include MPLAB Starter Kit boards, PICDEM demo
boards, and various other evaluation boards.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at http://www.microchip.com. This
web site is used as a means to make files and information easily available to
customers. Accessible by using your favorite Internet browser, the web site contains
the following information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

» General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

© 2012 Microchip Technology Inc. DS52071B-page 15

MPLAB® XC16 C Compiler User’s Guide

MICROCHIP FORUMS

Microchip provides additional online support via our web forums at
http://www.microchip.com/forums. Currently available forums are:
» Development Tools

+ 8-bit PIC MCUs

« 16-bit PIC MCUs

* 32-bit PIC MCUs

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

+ Distributor or Representative

* Local Sales Office

+ Field Application Engineer (FAE)

+ Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of

sales offices and locations is included in the back of this document. See our web site
for a complete, up-to-date listing of sales offices.

Technical support is available through the web site at http://support.microchip.com.
Documentation errors or comments may be emailed to docerrors@microchip.com.

DOCUMENT REVISION HISTORY
Revision A (April 2012)

Initial release of this document.

Revision B (July 2012)

» Chapter 2. “Common C Interface” was added.
« Figure 3-1 "Software Development Tools Data Flow" was updated.
 Table 3-16 "Linking Options" now includes the -fill option.
» Added the -pack_upper_byte qualifier information in
Section 6.10.4 “__pack_upper_byte Type Qualifier” and
Section 7.8 “Packing Data Stored in Flash”.
» Added DBRPAG/PSVPAG preservation bullet under Section 10.8 “Function Call
Conventions”
» Fixed code syntax in Section 11.4 “Specifying the Interrupt Vector”.
+ Fixed Eval Edition description under Chapter 15. “Optimizations”.
+ Added "volatile" to SFR registers in Appendix F. “Built-in Functions™.
 Added built-in functions __ builtin_write. CRYOTP and
__builtin_write_NVM_secure in Appendix F. “Built-in Functions”.

DS52071B-page 16 © 2012 Microchip Technology Inc.

MPLAB® XC16 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 1. Compiler Overview

1.1 INTRODUCTION

The MPLAB XC16 C compiler is defined and described in the following topics:

* Device Description
» Compiler Description and Documentation
+ Compiler and Other Development Tools

1.2 DEVICE DESCRIPTION

The MPLAB XC16 C compiler fully supports all Microchip 16-bit devices:

« The dsPIC® family of digital signal controllers combines the high performance
required in digital signal processor (DSP) applications with standard microcon-
troller (MCU) features needed for embedded applications.

» The PIC24 family of MCUs are identical to the dsPIC DSCs with the exception that
they do not have the digital signal controller module or that subset of instructions.
They are a subset, and are high-performance MCUs intended for applications that
do not require the power of the DSC capabilities.

1.3 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB XC16 C compiler is a full-featured, optimizing compiler that translates
standard ANSI C programs into 16-bit device assembly language source. The compiler
also supports many command-line options and language extensions that allow full
access to the 16-bit device hardware capabilities, and affords fine control of the com-
piler code generator.

The compiler is a port of the GNU Compiler Collection (GCC) compiler from the Free
Software Foundation

This key features of the compiler are discussed in the following sections.

1.3.1 ANSI C Standard

The compiler is a fully validated compiler that conforms to the ANSI C standard as
defined by the ANSI specification (ANSI x3.159-1989) and described in Kernighan and
Ritchie’s The C Programming Language (second edition). The ANSI standard includes
extensions to the original C definition that are now standard features of the language.
These extensions enhance portability and offer increased capability. In addition,
language extensions for dsPIC DSC embedded-control applications are included.

1.3.2 Optimization

The compiler uses a set of sophisticated optimization passes that employ many
advanced techniques for generating efficient, compact code from C source. The
optimization passes include high-level optimizations that are applicable to any C code,
as well as 16-bit device-specific optimizations that take advantage of the particular
features of the device architecture.

For more on optimizations, see Chapter 15. “Optimizations”.

© 2012 Microchip Technology Inc. DS52071B-page 17

MPLAB® XC16 C Compiler User’s Guide

1.3.3 ANSI Standard Library Support

The compiler is distributed with a complete ANSI C standard library. All library functions
have been validated, and conform to the ANSI C library standard. The library includes
functions for string manipulation, dynamic memory allocation, data conversion, time-
keeping and math functions (trigonometric, exponential and hyperbolic). The standard
I/O functions for file handling are also included, and, as distributed, they support full
access to the host file system using the command-line simulator. The fully functional
source code for the low-level file I/O functions is provided in the compiler distribution,
and may be used as a starting point for applications that require this capability.

1.3.4 Flexible Memory Models

The compiler supports both large and small code and data models. The small code
model takes advantage of more efficient forms of call and branch instructions, while the
small data model supports the use of compact instructions for accessing data in SFR
space.

The compiler supports two models for accessing constant data. The “constants in data”
model uses data memory, which is initialized by the run-time library. The “constants in
code” model uses program memory, which is accessed through the Program Space
Visibility (PSV) window.

1.3.5 Attributes and Qualifiers

The compiler keyword __attribute__ allows you to specify special attributes of
variables, structure fields or functions. This keyword is followed by an attribute
specification inside double parentheses, as in:

int last_mode _ _attribute ((persistent));

In other compilers, qualifiers are used to create qualified types:

persistent int last_mode;

The MPLAB XC16 C Compiler does have some non-standard qualifiers described in
Section 6.10 “Compiler-Specific type Qualifiers”.

Generally speaking, qualifiers indicate how an object should be accessed, whereas
attributes indicate where objects are to be located. Attributes also have many other
purposes.

1.3.6 Compiler Driver

The compiler includes a powerful command-line driver program. Using the driver
program, application programs can be compiled, assembled and linked in a single step.
1.3.7 Documentation

The compiler is supported under both the MPLAB IDE v8.xx and above, and the
MPLAB X IDE. For simplicity, both IDEs are referred to throughout the book as simply
MPLAB IDE.

Features that are unique to specific devices, and therefore specific compilers, are
noted with a “DD” icon next to the section and text that identifies the specific devices to
which the information applies (see the Preface).

DS52071B-page 18 © 2012 Microchip Technology Inc.

Compiler Overview

1.4 COMPILER AND OTHER DEVELOPMENT TOOLS

The compiler works with many other Microchip tools including:

« MPLAB XC16 Assembler and Linker - see the MPLAB Assembler, Linker and Ultil-
ities for PIC24 MCUs and dsPIC DSCs User’s Guide (DS51317).

MPLAB IDE v8.xx and MPLAB X IDE

» The MPLAB SIM Simulator and MPLAB X Simulator

» All Microchip debug tools and programmers

» Demonstration boards and Starter kits that support 16-bit devices

© 2012 Microchip Technology Inc. DS52071B-page 19

MPLAB® XC16 C Compiler User’s Guide

NOTES:

DS52071B-page 20 © 2012 Microchip Technology Inc.

MPLAB® XC16 C COMPILER
MICROCHIP USER’S GUIDE

Chapter 2. Common C Interface

2.1 INTRODUCTION

The Common C Interface (CCI) is available with all MPLAB XC C compilers and is
designed to enhance code portability between these compilers. For example,
CCl-conforming code would make it easier to port from a PIC18 MCU using the MPLAB
XC8 C compiler to a PIC24 MCU using the MPLAB XC16 C compiler.

The CCl assumes that your source code already conforms to the ANSI Standard. If you
intend to use the CCl, it is your responsibility to write code that conforms. Legacy proj-
ects will need to be migrated to achieve conformance. A compiler option must also be
setto ensure that the operation of the compiler is consistent with the interface when the
project is built.

The following topics are examined in this chapter of the MPLAB XC16 C Compiler
User’s Guide:

« ANSI Standard Extensions
+ Using the CCl

» ANSI Standard Refinement
« ANSI Standard Extensions

2.2 BACKGROUND - THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different
execution environment than that for which it was written. Rarely can code be one hun-
dred percent portable, but the more tolerant it is to change, the less time and effort it
takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,
but this is only part of the situation. The same code could be compiled for the same
target but with a different compiler. Differences between those compilers might lead to
the code failing at compile time or runtime, so this must be considered as well.

You may only write code for one target device and only use one brand of compiler, but
if there is no regulation of the compiler’s operation, simply updating your compiler
version may change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-
piler vendors can base their products on different technologies, implement different fea-
tures and code syntax, or improve the way their product works. Many a great compiler
optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed
and code is more portable. The American National Standards Institute (ANSI) pub-
lishes standards for many disciplines, including programming languages. The ANSI C
Standard is a universally adopted standard for the C programming language.

© 2012 Microchip Technology Inc. DS52071B-page 21

MPLAB® XC16 C Compiler User’s Guide

2.2.1 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compilers ven-
dors to target new devices and improve code generation, with the known functional
operation of source code for programmers. If both goals can be met, source code can
be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a
conforming C program must follow, but the semantic rules by which that program will
be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a
conforming C program functions as described by the standard.

The standard describes implementation, the set of tools and the runtime environment
on which the code will run. If any of these change, e.g., you build for, and run on, a dif-
ferent target device, or if you update the version of the compiler you use to build, then
you are using a different implementation.

The standard uses the term behaviorto mean the external appearance or action of the
program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,
some specifications appear somewhat vague. For example, the standard states that an
int type must be able to hold at least a 16-bit value, but it does not go as far as saying
what the size of an int actually is; and the action of right-shifting a signed integer can
produce different results on different implementations; yet, these different results are
still ANSI C compliant.

If the standard is too strict, device architectures may not allow the compiler to conform.
But, if it is too weak, programmers would see wildly differing results within different
compilers and architectures, and the standard would loose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups
that include the following behaviors:

Implementation-defined behavior

This is unspecified behavior where each implementation documents how the choice
is made.

Unspecified behavior

The standard provides two or more possibilities and imposes no further requirements
on which possibility is chosen in any particular instance.

Undefined behavior
This is behavior for which the standard imposes no requirements.

Code that strictly conforms to the standard does not produce output that is dependent
on any unspecified, undefined, or implementation-defined behavior. The size of an
int, which we used as an example earlier, falls into the category of behavior that is
defined by implementation. That is to say, the size of an int is defined by which com-
piler is being used, how that compiler is being used, and the device that is being tar-
geted.

All the MPLAB XC compilers conform to the ANS X3.159-1989 Standard for program-
ming languages (with the exception of the XC8 compiler’s inability to allow recursion,

as mentioned in the footnote). This is commonly called the C89 Standard. Some fea-

tures from the later standard, C99, are also supported.

1. Case in point: The mid-range PIC® microcontrollers do not have a data stack. Because a compiler
targeting this device cannot implement recursion, it (strictly speaking) cannot conform to the ANSI
C Standard. This example illustrate a situation in which the standard is too strict for mid-range
devices and tools.

DS52071B-page 22

© 2012 Microchip Technology Inc.

Common C Interface

For freestanding implementations — or for what we typically call embedded applications
—the standard allows non-standard extensions to the language, but obviously does not
enforce how they are specified or how they work. When working so closely to the
device hardware, a programmer needs a means of specifying device setup and inter-
rupts, as well as utilizing the often complex world of small-device memory
architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and
compiler vendors, programmers need to consider the implementation-defined behavior
of their tools and the probability that they may need to use extensions to the C language
that are non-standard. Both of these circumstances can have an impact on code por-
tability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier
for programmers to achieve consistent outcomes on all Microchip devices when using
any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the ANSI C Standard

The CCl documents specific behavior for some code in which actions are implemen-
tation-defined behavior under the ANSI C Standard. For example, the result of
right-shifting a signed integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device characteristics, such as
the size of an int, are not defined by the CCI.

Consistent syntax for non-standard extensions

The CCI non-standard extensions are mostly implemented using keywords with a uni-
form syntax. They replace keywords, macros and attributes that are the native com-
piler implementation. The interpretation of the keyword may differ across each com-
piler, and any arguments to the keywords may be device specific.

Coding guidelines

The CCIl may indicate advice on how code should be written so that it can be ported
to other devices or compilers. While you may choose not to follow the advice, it will
not conform to the CCI.

© 2012 Microchip Technology Inc. DS52071B-page 23

MPLAB® XC16 C Compiler User’s Guide

2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and
standardizing the syntax for extensions to the language.

The CCl is something you choose to follow and put into effect, thus it is relevant for new
projects, although you may choose to modify existing projects so they conform.

For your project to conform to the CCI, you must do the following things.

Enable the CCI

Select the MPLAB IDE widget Use CCI Syntax in your project, or use the
command-line option that is equivalent.

Include <xc.h> in every module
Some CCl features are only enabled if this header is seen by the compiler.

Ensure ANSI compliance
Code that does not conform to the ANSI C Standard does not confirm to the CCI.

Observe refinements to ANSI by the CCI
Some ANSI implementation-defined behavior is defined explicitly by the CCI.

Use the CCI extensions to the language
Use the CCI extensions rather than the native language extensions

The next sections detail specific items associated with the CCI. These items are seg-
regated into those that refine the standard, those that deal with the ANSI C Standard
extensions, and other miscellaneous compiler options and usage. Guidelines are indi-
cated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed
in this document, then it is not part of the CCIl. For example, GCC case ranges, label
addresses and 24-bit short long types are not part of the CCI. Programs which use
these features do not conform to the CCI. The compiler may issue a warning or error
to indicate when you use a non-CCl feature and the CCl is enabled.

DS52071B-page 24

© 2012 Microchip Technology Inc.

Common C Interface

2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CClI refines the implementation-defined
behaviors outlined in the ANSI C Standard.

241 Source File Encoding

Under the CCI, a source file must be written using characters from the 7-bit ASCII set.
Lines may be terminated using a line feed (\n') or carriage return ('\r') that is immedi-
ately followed by a line feed. Escaped characters may be used in character constants
or string literals to represent extended characters not in the basic character set.

2411 EXAMPLE

The following shows a string constant being defined that uses escaped characters.
const char myName[] = "Bj\370rk\n";

24.1.2 DIFFERENCES

All compilers have used this character set.

24.1.3 MIGRATION TO THE CClI

No action required.

2.4.2 The Prototype for main
The prototype for the main () function is
int main (void);

2421 EXAMPLE

The following shows an example of how main () might be defined

int main (void)
{
while (1)
process () ;

}
2422 DIFFERENCES
The 8-bit compilers used a void return type for this function.

2423 MIGRATION TO THE CCl

Each program has one definition for the main () function. Confirm the return type for
main () in all projects previously compiled for 8-bit targets.

24.3 Header File Specification
Header file specifications that use directory separators do not conform to the CCI.

2431 EXAMPLE

The following example shows two conforming include directives.

#include <usb_main.h>
#include "global.h"

© 2012 Microchip Technology Inc. DS52071B-page 25

	Contact us
	Table of Contents
	Preface
	Introduction
	Document Layout
	Conventions Used
	Recommended Reading
	myMicrochip Personalized Notification Service
	The Microchip Web Site
	Microchip Forums
	Customer Support
	Document Revision History

	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Device Description
	1.3 Compiler Description and Documentation
	1.3.1 ANSI C Standard
	1.3.2 Optimization
	1.3.3 ANSI Standard Library Support
	1.3.4 Flexible Memory Models
	1.3.5 Attributes and Qualifiers
	1.3.6 Compiler Driver
	1.3.7 Documentation

	1.4 Compiler and Other Development Tools

	Chapter 2. Common C Interface
	2.1 Introduction
	2.2 Background – The Desire for Portable Code
	2.2.1 The ANSI Standard
	2.2.2 The Common C Interface

	2.3 Using the CCI

