
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

 2012-2016 Microchip Technology Inc. DS50001686J

MPLAB® XC32 C/C++ Compiler

User’s Guide

DS50001686J-page 2 2012-2016 Microchip Technology Inc.

Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR

WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR

OTHERWISE, RELATED TO THE INFORMATION,

INCLUDING BUT NOT LIMITED TO ITS CONDITION,

QUALITY, PERFORMANCE, MERCHANTABILITY OR

FITNESS FOR PURPOSE. Microchip disclaims all liability

arising from this information and its use. Use of Microchip

devices in life support and/or safety applications is entirely at

the buyer’s risk, and the buyer agrees to defend, indemnify and

hold harmless Microchip from any and all damages, claims,

suits, or expenses resulting from such use. No licenses are

conveyed, implicitly or otherwise, under any Microchip

intellectual property rights unless otherwise stated.

Note the following details of the code protection feature on Microchip devices:

� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY	MANAGEMENT		SYSTEM	
CERTIFIED	BY	DNV	

== ISO/TS	16949	==	

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate,

dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,

KEELOQ logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,

MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,

RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O

are registered trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,

ETHERSYNCH, Hyper Speed Control, HyperLight Load,

IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are

registered trademarks of Microchip Technology Incorporated

in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,

BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,

dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,

EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip

Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,

motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,

MPLINK, MultiTRAK, NetDetach, Omniscient Code

Generation, PICDEM, PICDEM.net, PICkit, PICtail,

PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,

Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total

Endurance, TSHARC, USBCheck, VariSense, ViewSpan,

WiperLock, Wireless DNA, and ZENA are trademarks of

Microchip Technology Incorporated in the U.S.A. and other

countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

Silicon Storage Technology is a registered trademark of

Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology

Germany II GmbH & Co. KG, a subsidiary of Microchip

Technology Inc., in other countries.

All other trademarks mentioned herein are property of their

respective companies.

© 2012-2016, Microchip Technology Incorporated, Printed in

the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0679-2

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012-2016 Microchip Technology Inc. DS50001686J-page 3

Table of Contents

Preface ... 9

Document Layout .. 9

Conventions Used ... 11

Recommended Reading.. 12

Chapter 1. Compiler Overview

1.1 Introduction ... 15

1.2 Device Description ... 15

1.3 Compiler Description and Documentation .. 15

1.4 Compiler and Other Development Tools .. 17

Chapter 2. Common C Interface

2.1 Introduction ... 19

2.2 Background – The Desire for Portable Code ... 19

2.3 Using the CCI ... 22

2.4 ANSI Standard Refinement .. 23

2.5 ANSI Standard Extensions ... 31

2.6 Compiler Features .. 46

Chapter 3. How To’s

3.1 Introduction ... 47

3.2 Installing and Activating the Compiler .. 47

3.3 Invoking the Compiler ... 49

3.4 Writing Source Code .. 52

3.5 Getting My Application to Do What I Want ... 62

3.6 Understanding the Compilation Process .. 66

3.7 Fixing Code That Does Not Work ... 73

Chapter 4. XC32 Toolchain and MPLAB X IDE

4.1 Introduction ... 75

4.2 MPLAB X IDE and Tools Installation .. 75

4.3 MPLAB X IDE Setup .. 76

4.4 MPLAB X IDE Projects ... 77

4.5 Project Setup .. 79

4.6 Project Example ... 90

Chapter 5. Compiler Command Line Driver

5.1 Introduction ... 93

5.2 Invoking the Compiler ... 93

5.3 The C Compilation Sequence .. 97

5.4 The C++ Compilation Sequence .. 100

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 4 2012-2016 Microchip Technology Inc.

5.5 Runtime Files ... 104

5.6 Start-Up and Initialization ... 107

5.7 Compiler Output ... 109

5.8 Compiler Messages .. 111

5.9 Driver Option Descriptions ... 111

Chapter 6. ANSI C Standard Issues

6.1 Introduction ... 135

6.2 Divergence from the ANSI C Standard .. 135

6.3 Extensions to the ANSI C Standard ... 135

6.4 Implementation-Defined Behavior .. 136

Chapter 7. Device-Related Features

7.1 Introduction ... 137

7.2 Device Support ... 137

7.3 Device Header Files ... 137

7.4 Stack .. 138

7.5 Configuration Bit Access .. 139

7.6 ID Locations ... 140

7.7 Using SFRs From C Code .. 141

Chapter 8. Supported Data Types and Variables

8.1 Introduction ... 145

8.2 Identifiers .. 145

8.3 Data Representation .. 145

8.4 Integer Data Types ... 146

8.5 Floating-Point Data Types .. 148

8.6 Structures and Unions .. 150

8.7 Pointer Types ... 152

8.8 Complex Data Types .. 154

8.9 Constant Types and Formats ... 154

8.10 Standard Type Qualifiers .. 157

8.11 Compiler-Specific Qualifiers ... 158

8.12 Variable Attributes .. 158

Chapter 9. Memory Allocation and Access

9.1 Introduction ... 163

9.2 Address Spaces ... 163

9.3 Variables in Data Memory .. 164

9.4 Auto Variable Allocation and Access .. 167

9.5 Variables in Program Memory .. 169

9.6 Variables in Registers .. 170

9.7 Application-Defined Memory Regions .. 171

9.8 Dynamic Memory Allocation ... 175

9.9 Memory Models .. 175

Chapter 10. Fixed-Point Arithmetic Support

10.1 Introduction ... 177

Table of Contents

 2012-2016 Microchip Technology Inc. DS50001686J-page 5

10.2 Enabling Fixed-Point Arithmetic Support .. 177

10.3 Data Types ... 178

10.4 External definitions ... 180

10.5 SIMD Variables .. 181

10.6 Accessing Elements in SIMD Variables ... 182

10.7 Array Alignment and Data Layout .. 184

10.8 C Operators .. 185

10.9 Operations on SIMD Variables ... 186

10.10 DSP Built-in Functions ... 187

10.11 DSP Control Register ... 187

10.12 Using Accumulators ... 188

10.13 Mixed-mode operations .. 188

10.14 Auto-Vectorization to SIMD .. 189

10.15 FIR Filter Example Project ... 190

Chapter 11. Operators and Statements

11.1 Introduction ... 193

11.2 Integral Promotion .. 193

11.3 Type References .. 195

11.4 Labels as Values .. 196

11.5 Conditional Operator Operands ... 197

11.6 Case Ranges .. 197

Chapter 12. Register Usage

12.1 Introduction ... 199

12.2 Register Usage ... 199

12.3 Register Conventions ... 199

Chapter 13. Functions

13.1 Introduction ... 201

13.2 Writing Functions .. 201

13.3 Function Attributes and Specifiers .. 202

13.4 Allocation of Function Code ... 206

13.5 Changing the Default Function Allocation .. 206

13.6 Function Size Limits ... 207

13.7 Function Parameters .. 207

13.8 Function Return Values .. 209

13.9 Calling Functions .. 209

13.10 Inline Functions .. 210

Chapter 14. Interrupts

14.1 Introduction ... 213

14.2 Interrupt Operation ... 213

14.3 Writing an Interrupt Service Routine .. 214

14.4 Associating a Handler Function with an Exception Vector 219

14.5 Exception Handlers .. 221

14.6 Interrupt Service Routine Context Switching .. 222

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 6 2012-2016 Microchip Technology Inc.

14.7 Latency ... 222

14.8 Nesting Interrupts ... 222

14.9 Enabling/Disabling Interrupts ... 223

14.10 ISR Considerations .. 223

Chapter 15. Main, Runtime Start-up and Reset

15.1 Introduction ... 225

15.2 The Main Function .. 225

15.3 Runtime Start-up Code ... 226

15.4 The On Reset Routine .. 241

Chapter 16. Library Routines

16.1 Using Library Routines ... 243

Chapter 17. Mixing C/C++ and Assembly Language

17.1 Introduction ... 245

17.2 Mixing Assembly Language and C Variables and Functions 245

17.3 Using Inline Assembly Language ... 248

17.4 Predefined Macros ... 252

Chapter 18. Optimizations

18.1 Introduction ... 255

Chapter 19. Preprocessing

19.1 Introduction ... 257

19.2 C/C++ Language Comments .. 257

19.3 Preprocessor Directives ... 258

19.4 Pragma Directives .. 260

19.5 Predefined Macros ... 261

Chapter 20. Linking Programs

20.1 Introduction ... 265

20.2 Replacing Library Symbols ... 265

20.3 Linker-Defined Symbols ... 265

20.4 Default Linker Script ... 266

Appendix A. Embedded Compiler Compatibility Mode

A.1 Introduction .. 285

A.2 Compiling in Compatibility Mode .. 285

A.3 Syntax Compatibility .. 286

A.4 Data Type .. 287

A.5 Operator ... 287

A.6 Extended Keywords ... 288

A.7 Intrinsic Functions .. 289

A.8 Pragmas ... 290

Appendix B. Implementation-Defined Behavior

B.1 Introduction .. 291

B.2 Highlights ... 291

B.3 Overview .. 291

B.4 Translation ... 292

Table of Contents

 2012-2016 Microchip Technology Inc. DS50001686J-page 7

B.5 Environment ... 292

B.6 Identifiers ... 293

B.7 Characters ... 293

B.8 Integers .. 294

B.9 Floating-Point ... 295

B.10 Arrays and Pointers ... 296

B.11 Hints ... 296

B.12 Structures, Unions, Enumerations, and Bit Fields 296

B.13 Qualifiers .. 297

B.14 Declarators ... 297

B.15 Statements ... 297

B.16 Pre-Processing Directives .. 298

B.17 Library Functions ... 298

B.18 Architecture .. 302

Appendix C. Deprecated Features

C.1 Introduction .. 303

C.2 Variables in Specified Registers .. 303

Appendix D. Built-In Functions

D.1 Introduction .. 305

D.2 Built-In Function Descriptions .. 306

D.3 Built-In DSP Functions ... 309

Appendix E. ASCII Character Set

Appendix F. Document Revision History

Document Revision History ... 319

Support .. 323

Introduction.. 323

myMicrochip Personalized Notification Service... 323

The Microchip Web Site .. 324

Microchip Forums.. 324

Customer Support ... 324

Contact Microchip Technology .. 324

Glossary ... 325

Index ... 345

Worldwide Sales and Service .. 358

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 8 2012-2016 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012-2016 Microchip Technology Inc. DS50001686J-page 9

Preface

MPLAB® XC32 C/C++ Compiler documentation and support information is discussed

in the sections below:

� Document Layout

� Conventions Used

� Recommended Reading

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 32-bit

applications. The document layout is as follows:

� Chapter 1. Compiler Overview – describes the compiler, development tools and

feature set.

� Chapter 2. Common C Interface – explains what you need to know about making

code portable.

� Chapter 3. How To’s – contains help and references for frequently encountered

situations when building projects.

� Chapter 4. XC32 Toolchain and MPLAB X IDE – guides you through the toolchain

and IDE setup.

� Chapter 5. Compiler Command Line Driver – describes how to use the compiler

from the command line.

� Chapter 6. ANSI C Standard Issues – describes the differences between the

C/C++ language supported by the compiler syntax and the standard ANSI-89 C.

� Chapter 7. Device-Related Features – describes the compiler header and register

definition files, as well as how to use them with the SFRs.

� Chapter 8. Supported Data Types and Variables – describes the compiler integer

and pointer data types.

� Chapter 9. Memory Allocation and Access – describes the compiler run-time

model, including information on sections, initialization, memory models, the

software stack and much more.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documenta-

tion are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions

may differ from those in this document.

For the most up-to-date information on development tools, see the MPLAB® IDE or MPLAB X IDE

Help. Select the Help menu and then “Topics” or “Help Contents” to open a list of available Help files.

For the most current PDFs, please refer to our web site (http://www.microchip.com). Documents are

identified by “DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of

the document. This number is located on the bottom of each page, in front of the page number.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 10 2012-2016 Microchip Technology Inc.

� Chapter 10. Fixed-Point Arithmetic Support – describes the fixed-point types and

operations supported.

� Chapter 11. Operators and Statements – discusses operators and statements.

� Chapter 12. Register Usage – explains how to access and use SFRs.

� Chapter 13. Functions – details available functions.

� Chapter 14. Interrupts – describes how to use interrupts.

� Chapter 15. Main, Runtime Start-up and Reset – describes important elements of

C/C++ code.

� Chapter 16. Library Routines – explains how to use libraries.

� Chapter 17. Mixing C/C++ and Assembly Language – provides guidelines for

using the compiler with 32-bit assembly language modules.

� Chapter 18. Optimizations – describes optimization options.

� Chapter 19. Preprocessing – details the preprocessing operation.

� Chapter 20. Linking Programs – explains how linking works.

� Appendix A. Embedded Compiler Compatibility Mode – discusses using the

compiler in compatibility mode.

� Appendix B. Implementation-Defined Behavior – details compiler-specific

parameters described as implementation-defined in the ANSI standard.

� Appendix C. Deprecated Features – details features that are considered obsolete.

� Appendix D. Built-In Functions – lists the built-in functions of the C compiler.

� Appendix E. ASCII Character Set – contains the ASCII character set.

� Appendix F. Document Revision History – information on previous and current

revisions of this document.

Preface

 2012-2016 Microchip Technology Inc. DS50001686J-page 11

CONVENTIONS USED

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® X IDE User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or dia-

log

“Save project before build”

Underlined, italic text with

right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ’A’

Italic Courier A variable argument file.o, where file can be

any valid filename

Square brackets [] Optional arguments mpasmwin [options] file

[options]

Curly brackets and pipe

character: { | }

Choice of mutually exclusive

arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,

var_name...]

Represents code supplied by

user

void main (void)

{ ...

}

Sidebar Text

Device Dependent.

This feature is not supported on

all devices. Devices supported

will be listed in the title or text.

xmemory attribute

DD

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 12 2012-2016 Microchip Technology Inc.

RECOMMENDED READING

The MPLAB® XC32 language toolsuite for PIC32 MCUs consists of a C compilation

driver (xc32-gcc), a C++ compilation driver (xc32-g++), an assembler (xc32-as), a

linker (xc32-ld), and an archiver/librarian (xc32-ar). This document describes how to

use the MPLAB XC32 C/C++ Compiler. Other useful documents are listed below. The

following Microchip documents are available and recommended as supplemental ref-

erence resources.

Release Notes (Readme Files)

For the latest information on Microchip tools, read the associated Release Notes

(HTML files) included with the software.

MPLAB® XC32 Assembler, Linker and Utilities User’s Guide

(DS50002186)

A guide to using the 32-bit assembler, object linker, object archiver/librarian and various

utilities.

32-Bit Language Tools Libraries (DS50001685)

Lists all library functions provided with the MPLAB XC32 C/C++ Compiler with detailed

descriptions of their use.

Dinkum Compleat Libraries

The Dinkum Compleat Libraries are organized into a number of headers – files that you

include in your program to declare or define library facilities. A link to the Dinkum librar-

ies is available in the MPLAB X IDE application, on the My MPLAB X IDE tab,

References & Featured Links section.

PIC32 Configuration Settings

Lists the Configuration Bit settings for the Microchip PIC32 devices supported by the

#pragma config of the MPLAB XC32 C/C++ Compiler.

Device-Specific Documentation

The Microchip website contains many documents that describe 32-bit device functions

and features. Among these are:

� Individual and family data sheets

� Family reference manuals

� Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems – Programming Language – C.

American National Standards Institute (ANSI), 11 West 42nd. Street, New York,

New York, 10036.

This standard specifies the form and establishes the interpretation of programs

expressed in the programming language C. Its purpose is to promote portability,

reliability, maintainability and efficient execution of C language programs on a

variety of computing systems.

C++ Standards Information

Stroustrup, Bjarne, C++ Programming Language: Special Edition, 3rd Edition.

Addison-Wesley Professional; Indianapolis, Indiana, 46240.

Preface

 2012-2016 Microchip Technology Inc. DS50001686J-page 13

ISO/IEC 14882 C++ Standard. The ISO C++ Standard is standardized by ISO (The

International Standards Organization) in collaboration with ANSI (The American

National Standards Institute), BSI (The British Standards Institute) and DIN (The

German national standards organization).

This standard specifies the form and establishes the interpretation of programs

expressed in the programming language C++. Its purpose is to promote portability,

reliability, maintainability and efficient execution of C++ language programs on a

variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,

Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second

Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,

Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology

Publishing, Eagle Rock, Virginia 24085.

GCC Documents

http://gcc.gnu.org/onlinedocs/

http://sourceware.org/binutils/

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 14 2012-2016 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012-2016 Microchip Technology Inc. DS50001686J-page 15

Chapter 1. Compiler Overview

1.1 INTRODUCTION

The MPLAB XC32 C/C++ Compiler is defined and described in the following topics:

� Device Description

� Compiler Description and Documentation

� Compiler and Other Development Tools

1.2 DEVICE DESCRIPTION

The MPLAB XC32 C/C++ Compiler fully supports all Microchip 32-bit devices.

1.3 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB XC32 C/C++ Compiler is a full-featured, optimizing compiler that trans-

lates standard ANSI C programs into 32-bit device assembly language source. The

compiler also supports many command-line options and language extensions that

allow full access to the 32-bit device hardware capabilities, and affords fine control of

the compiler code generator.

The compiler is a port of the GCC compiler from the Free Software Foundation.

The compiler is available for several popular operating systems, including 32- and

64-bit Windows®, Linux® and Mac OS® X.

The compiler can run in one of three operating modes: Free, Standard or PRO. The

Standard and PRO operating modes are licensed modes and require an activation key

and Internet connectivity to enable them. Free mode is available for unlicensed cus-

tomers. The basic compiler operation, supported devices and available memory are

identical across all modes. The modes only differ in the level of optimization employed

by the compiler.

1.3.1 Conventions

Throughout this manual, the term “the compiler” is often used. It can refer to either all,

or some subset of, the collection of applications that form the MPLAB XC32 C/C++

Compiler. Often it is not important to know, for example, whether an action is performed

by the parser or code generator application, and it is sufficient to say it was performed

by “the compiler”.

It is also reasonable for “the compiler” to refer to the command-line driver (or just driver)

as this is the application that is always executed to invoke the compilation process. The

driver for the MPLAB XC32 C/C++ Compiler package is called xc32-gcc. The driver for

the C/ASM projects is also xc32-gcc. The driver for C/C++/ASM projects is xc32-g++.

The drivers and their options are discussed in Section 5.9 “Driver Option Descriptions”.

Following this view, “compiler options” should be considered command-line driver

options, unless otherwise specified in this manual.

Similarly “compilation” refers to all, or some part of, the steps involved in generating

source code into an executable binary image.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 16 2012-2016 Microchip Technology Inc.

1.3.2 ANSI C Standards

The compiler is a fully validated compiler that conforms to the ANSI C standard as

defined by the ANSI specification (ANSI x3.159-1989) and described in Kernighan and

Ritchie’s The C Programming Language (second edition). The ANSI standard includes

extensions to the original C definition that are now standard features of the language.

These extensions enhance portability and offer increased capability. In addition,

language extensions for PIC32 MCU embedded-control applications are included.

1.3.3 Optimization

The compiler uses a set of sophisticated optimization passes that employ many

advanced techniques for generating efficient, compact code from C/C++ source. The

optimization passes include high-level optimizations that are applicable to any C/C++

code, as well as PIC32 MCU-specific optimizations that take advantage of the particu-

lar features of the device architecture.

For more on optimizations, see Chapter 18. “Optimizations”.

1.3.4 ANSI Standard Library Support

The compiler is distributed with a complete ANSI C standard library. All library functions

have been validated and conform to the ANSI C library standard. The library includes

functions for string manipulation, dynamic memory allocation, data conversion, time-

keeping and math functions (trigonometric, exponential and hyperbolic). The standard

I/O functions for file handling are also included, and, as distributed, they support full

access to the host file system using the command-line simulator. The fully functional

source code for the low-level file I/O functions is provided in the compiler distribution,

and may be used as a starting point for applications that require this capability.

1.3.5 ISO/IEC C++ Standard

The compiler is distributed with the 2003 Standard C++ Library.

1.3.6 Compiler Driver

The compiler includes a powerful command-line driver program. Using the driver

program, application programs can be compiled, assembled and linked in a single step.

Note: Do not specify an MPLAB XC32 system include directory (e.g.,

/pic32mx/include/) in your project properties.The xc32-gcc compilation

drivers automatically select the XC libc and their respective include-file

directory for you. The xc32-g++ compilation drivers automatically select the

Dinkumware libc and their respective include-file directory for you. The Din-

kum C libraries can only be used with the C++ compiler. Manually adding a

system include file path may disrupt this mechanism and cause the incor-

rect libc include files to be compiled into your project, causing a conflict

between the include files and the library. Note that adding a system include

path to your project properties has never been a recommended practice.

Compiler Overview

 2012-2016 Microchip Technology Inc. DS50001686J-page 17

1.3.7 Documentation

The C compiler is supported under both the MPLAB IDE v8.84 or higher, and the

MPLAB X IDE. For C++, MPLAB X IDE v1.50 or higher is required. For simplicity, both

IDEs are referred to throughout this book as simply MPLAB IDE.

Features that are unique to specific devices, and therefore specific compilers, are

noted with “DD” in the column (see the Preface), and text identifying the devices to

which the information applies.

1.4 COMPILER AND OTHER DEVELOPMENT TOOLS

The compiler works with many other Microchip tools including:

� MPLAB XC32 assembler and linker - see the “MPLAB® XC32 Assembler, Linker

and Utilities User’s Guide” (DS50002186).

� MPLAB IDE v8.xx and MPLAB X IDE (C++ required MPLAB X IDE v1.30 or

higher)

� The MPLAB Simulator

� All Microchip debug tools and programmers

� Demo boards and starter kits that support 32-bit devices

Note: Building an MPLAB XC32 C++ project and debugging C++ code requires

MPLAB X IDE v1.50 (or later). MPLAB IDE v8.xx does not support C++

projects.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 18 2012-2016 Microchip Technology Inc.

NOTES:

MPLAB® XC32 C/C++ COMPILER

USER’S GUIDE

 2012-2016 Microchip Technology Inc. DS50001686J-page 19

Chapter 2. Common C Interface

2.1 INTRODUCTION

The Common C Interface (CCI) is available with all MPLAB XC C compilers and is

designed to enhance code portability between these compilers. For example,

CCI-conforming code would make it easier to port from a PIC18 MCU using the MPLAB

XC8 C compiler to a PIC32 MCU using the MPLAB XC32 C/C++ Compiler.

The CCI assumes that your source code already conforms to the ANSI Standard. If you

intend to use the CCI, it is your responsibility to write code that conforms. Legacy proj-

ects will need to be migrated to achieve conformance. A compiler option must also be

set to ensure that the operation of the compiler is consistent with the interface when the

project is built.

The following topics are examined in this chapter:

� Background – The Desire for Portable Code

� Using the CCI

� ANSI Standard Refinement

� ANSI Standard Extensions

� Compiler Features

2.2 BACKGROUND – THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different

execution environment than that for which it was written. Rarely can code be one hun-

dred percent portable, but the more tolerant it is to change, the less time and effort it

takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,

but this is only part of the situation. The same code could be compiled for the same

target but with a different compiler. Differences between those compilers might lead to

the code failing at compile time or runtime, so this must be considered as well.

You can only write code for one target device and only use one brand of compiler; but

if there is no regulation of the compiler’s operation, simply updating your compiler

version can change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-

piler vendors can base their products on different technologies, implement different fea-

tures and code syntax, or improve the way their product works. Many a great compiler

optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed

and code is more portable. The American National Standards Institute (ANSI) pub-

lishes standards for many disciplines, including programming languages. The ANSI C

Standard is a universally adopted standard for the C programming language.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 20 2012-2016 Microchip Technology Inc.

2.2.1 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compilers ven-

dors to target new devices and improve code generation, with the known functional

operation of source code for programmers. If both goals can be met, source code can

be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a

conforming C program must follow, but the semantic rules by which that program will

be interpreted. Thus, for a compiler to conform to the standard, it must ensure that a

conforming C program functions as described by the standard.

The standard describes implementation, the set of tools and the runtime environment

on which the code will run. If any of these change, e.g., you build for, and run on, a dif-

ferent target device, or if you update the version of the compiler you use to build, then

you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the

program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,

some specifications appear somewhat vague. For example, the standard states that an

int type must be able to hold at least a 16-bit value, but it does not go as far as saying

what the size of an int actually is; and the action of right-shifting a signed integer can

produce different results on different implementations; yet, these different results are

still ANSI C compliant.

If the standard is too strict, device architectures cannot allow the compiler to conform.1

But, if it is too weak, programmers would see wildly differing results within different

compilers and architectures, and the standard would lose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups

that include the following behaviors:

Code that strictly conforms to the standard does not produce output that is dependent

on any unspecified, undefined, or implementation-defined behavior. The size of an int,

which was used as an example earlier, falls into the category of behavior that is defined

by implementation. That is to say, the size of an int is defined by which compiler is

being used, how that compiler is being used, and the device that is being targeted.

All the MPLAB XC compilers conform to the ANSI X3.159-1989 Standard for program-

ming languages (with the exception of the MPLAB XC8 compiler’s inability to allow

recursion, as mentioned in the footnote). This is commonly called the C89 Standard.

Some features from the later standard, C99, are also supported.

1. For example, the mid-range PIC® microcontrollers do not have a data stack. Because a compiler

targeting this device cannot implement recursion, it (strictly speaking) cannot conform to the ANSI

C Standard. This example illustrates a situation in which the standard is too strict for mid-range

devices and tools.

Implementation-defined

behavior

This is unspecified behavior in which each

implementation documents how the choice is made.

Unspecified behavior The standard provides two or more possibilities and

imposes no further requirements on which possibility is

chosen in any particular instance.

Undefined behavior This is behavior for which the standard imposes no

requirements.

Common C Interface

 2012-2016 Microchip Technology Inc. DS50001686J-page 21

For freestanding implementations (or for what are typically call embedded applica-

tions), the standard allows non-standard extensions to the language, but obviously

does not enforce how they are specified or how they work. When working so closely to

the device hardware, a programmer needs a means of specifying device setup and

interrupts, as well as utilizing the often complex world of small-device memory

architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and

compiler vendors, programmers need to consider the implementation-defined behavior

of their tools and the probability that they may need to use extensions to the C language

that are non-standard. Both of these circumstances can have an impact on code

portability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier

for programmers to achieve consistent outcomes on all Microchip devices when using

any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the

ANSI C Standard

The CCI documents specific behavior for some code in which

actions are implementation-defined behavior under the ANSI

C Standard. For example, the result of right-shifting a signed

integer is fully defined by the CCI. Note that many

implementation-defined items that closely couple with device

characteristics, such as the size of an int, are not defined by

the CCI.

Consistent syntax

for non-standard

extensions

The CCI non-standard extensions are mostly implemented

using keywords with a uniform syntax. They replace keywords,

macros and attributes that are the native compiler implementa-

tion. The interpretation of the keyword can differ across each

compiler, and any arguments to the keywords can be device

specific.

Coding guidelines The CCI can indicate advice on how code should be written so

that it can be ported to other devices or compilers. While you

may choose not to follow the advice, it will not conform to the

CCI.

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 22 2012-2016 Microchip Technology Inc.

2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and

standardizing the syntax for extensions to the language.

The CCI is something you choose to follow and put into effect, thus it is relevant for new

projects, although you can choose to modify existing projects so they conform.

For your project to conform to the CCI, you must do the following things.

� Enable the CCI

Select the MPLAB X IDE widget Use CCI Syntax in your project, or use the

command-line option that is equivalent.

� Include <xc.h> in every module

Some CCI features are only enabled if this header is seen by the compiler.

� Ensure ANSI compliance

Code that does not conform to the ANSI C Standard does not confirm to the CCI.

� Observe refinements to ANSI by the CCI

Some ANSI implementation-defined behavior is defined explicitly by the CCI.

� Use the CCI extensions to the language

Use the CCI extensions rather than the native language extensions.

The next sections detail specific items associated with the CCI. These items are seg-

regated into those that refine the standard, those that deal with the ANSI C Standard

extensions, and other miscellaneous compiler options and usage. Guidelines are

indicated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed

in this document, then it is not part of the CCI. For example, GCC case ranges, label

addresses and 24-bit short long types are not part of the CCI. Programs which use

these features do not conform to the CCI. The compiler may issue a warning or error

to indicate a non-CCI feature has been used and the CCI is enabled.

Common C Interface

 2012-2016 Microchip Technology Inc. DS50001686J-page 23

2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined

behaviors outlined in the ANSI C Standard.

2.4.1 Source File Encoding

Under the CCI, a source file must be written using characters from the 7-bit ASCII set.

Lines can be terminated using a line feed (\n) or carriage return (\r) that is immediately

followed by a line feed. Escaped characters can be used in character constants or

string literals to represent extended characters that are not in the basic character set.

2.4.1.1 EXAMPLE

The following shows a string constant being defined that uses escaped characters.

const char myName[] = "Bj\370rk\n";

2.4.1.2 DIFFERENCES

All compilers have used this character set.

2.4.1.3 MIGRATION TO THE CCI

No action required.

2.4.2 The Prototype for main

The prototype for the main() function is:

int main(void);

2.4.2.1 EXAMPLE

The following shows an example of how main() might be defined

int main(void)

{

while(1)

process();

}

2.4.2.2 DIFFERENCES

The 8-bit compilers used a void return type for this function.

2.4.2.3 MIGRATION TO THE CCI

Each program has one definition for the main() function. Confirm the return type for

main() in all projects previously compiled for 8-bit targets.

2.4.3 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

2.4.3.1 EXAMPLE

The following example shows two conforming include directives.

#include <usb_main.h>

#include "global.h"

MPLAB® XC32 C/C++ Compiler User’s Guide

DS50001686J-page 24 2012-2016 Microchip Technology Inc.

2.4.3.2 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous

versions of all compilers. Compatibility problems arose when Windows-style separa-

tors “\” were used and the code was compiled under other host operating systems.

Under the CCI, no directory separators should be used.

2.4.3.3 MIGRATION TO THE CCI

Any #include directives that use directory separators in the header file specifications

should be changed. Remove all but the header file name in the directive. Add the direc-

tory path to the compiler’s include search path or MPLAB X IDE equivalent. This will

force the compiler to search the directories specified with this option.

For example, the following code:

#include <inc/lcd.h>

should be changed to:

#include <lcd.h>

and the path to the inc directory added to the compiler’s header search path in your

MPLAB X IDE project properties, or on the command-line as follows:

-Ilcd

2.4.4 Include Search Paths

When you include a header file under the CCI, the file should be discoverable in the

paths searched by the compiler that are detailed below.

Header files specified in angle bracket delimiters < > should be discoverable in the

search paths that are specified by -I options (or the equivalent MPLAB X IDE option),

or in the standard compiler include directories. The -I options are searched in the

order in which they are specified.

Header files specified in quote characters " " should be discoverable in the current

working directory or in the same directories that are searched when the header files are

specified in angle bracket delimiters (as above). In the case of an MPLAB X project, the

current working directory is the directory in which the C source file is located. If unsuc-

cessful, the search paths should be to the same directories searched when the header

file is specified in angle bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2.4.4.1 EXAMPLE

If including a header file, as in the following directive:

#include "myGlobals.h"

the header file should be locatable in the current working directory, or the paths speci-

fied by any -I options, or the standard compiler directories. A header file being located

elsewhere does not conform to the CCI.

Differences

The compiler operation under the CCI is not changed. This is purely a coding guideline.

2.4.4.2 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the -I option (or

the equivalent MPLAB X IDE option), and use the -I option in place of this. Ensure the

header file can be found in the directories specified in this section.

Common C Interface

 2012-2016 Microchip Technology Inc. DS50001686J-page 25

2.4.5 The Number of Significant Initial Characters in an Identifier

At least the first 255 characters in an identifier (internal and external) are significant.

This extends upon the requirement of the ANSI C Standard that states a lower number

of significant characters are used to identify an object.

2.4.5.1 EXAMPLE

The following example shows two poorly named variables, but names which are

considered unique under the CCI.

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningFast;

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningSlow;

2.4.5.2 DIFFERENCES

Former 8-bit compilers used 31 significant characters by default, but an option allowed

this to be extended.

The 16- and 32-bit compilers did not impose a limit on the number of significant

characters.

2.4.5.3 MIGRATION TO THE CCI

No action required. You can take advantage of the less restrictive naming scheme.

2.4.6 Sizes of Types

The sizes of the basic C types, for example char, int and long, are not fully defined

by the CCI. These types, by design, reflect the size of registers and other architectural

features in the target device. They allow the device to efficiently access objects of this

type. The ANSI C Standard does, however, indicate minimum requirements for these

types, as specified in <limits.h>.

If you need fixed-size types in your project, use the types defined in <stdint.h>, e.g.,

uint8_t or int16_t. These types are consistently defined across all XC compilers,

even outside of the CCI.

Essentially, the C language offers a choice of two groups of types: those that offer sizes

and formats that are tailored to the device you are using; or those that have a fixed size,

regardless of the target.

2.4.6.1 EXAMPLE

The following example shows the definition of a variable, native, whose size will allow

efficient access on the target device; and a variable, fixed, whose size is clearly

indicated and remains fixed, even though it may not allow efficient access on every

device.

int native;

int16_t fixed;

2.4.6.2 DIFFERENCES

This is consistent with previous types implemented by the compiler.

2.4.6.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of

the types defined by <stdint.h>.

	Contact us
	MPLAB XC32 C/C++ Compiler User's Guide
	Table of Contents
	Preface
	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Device Description
	1.3 Compiler Description and Documentation
	1.3.1 Conventions
	1.3.2 ANSI C Standards
	1.3.3 Optimization
	1.3.4 ANSI Standard Library Support
	1.3.5 ISO/IEC C++ Standard
	1.3.6 Compiler Driver
	1.3.7 Documentation

	1.4 Compiler and Other Development Tools

	Chapter 2. Common C Interface
	2.1 Introduction
	2.2 Background – The Desire for Portable Code
	2.2.1 The ANSI Standard
	2.2.2 The Common C Interface

	2.3 Using the CCI
	2.4 ANSI Standard Refinement
	2.4.1 Source File Encoding
	2.4.1.1 Example
	2.4.1.2 Differences
	2.4.1.3 Migration to the CCI

	2.4.2 The Prototype for main
	2.4.2.1 Example
	2.4.2.2 Differences
	2.4.2.3 Migration to the CCI

	2.4.3 Header File Specification
	2.4.3.1 Example
	2.4.3.2 Differences
	2.4.3.3 Migration to the CCI

	2.4.4 Include Search Paths
	2.4.4.1 Example
	2.4.4.2 Migration to the CCI

