

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

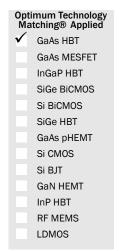
Contact us

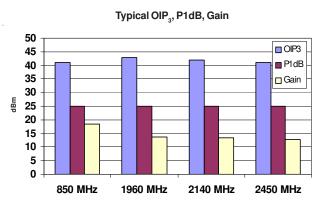
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

400 MHz to 2500 MHz 1/4 W MEDIUM POWER GaAs HBT AMPLIFIER WITH ACTIVE BIAS


Package: SOT-89



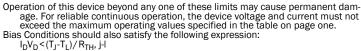
Product Description

RFMD's SXA-389B amplifier is a high efficiency GaAs Heterojunction Bipolar Transistor (HBT) MMIC housed in low-cost surface mountable plastic package. These HBT MMICs are fabricated using molecular beam epitaxial growth technology which produces reliable and consistent performance from wafer to wafer and lot to lot. These amplifiers are specially designed for use as driver devices for infrastructure equipment in the 400 MHz to 2500 MHz cellular, ISM, WLL, PCS, WCDMA applications. Its high linearity makes it an ideal choice for multi-carrier as well as digital applications.

Features

- Available in RFMD Green, RoHS Compliant, and Pb-Free (Z Part Number)
- Lower R_{TH} for increased MTTF 10⁸ Hours at T_{Lead}=85°C
- On-Chip Active Bias Control, Single 5V Supply
- Excellent Linearity: +43dBm Typ. OIP₃ at 1960MHz
- High P_{1dB}:+25dBm Typ.
- High Gain:+18.5dB at 850MHz
- Efficient: Consumes Only 575 mW

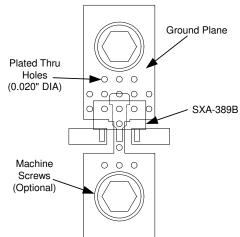
Applications


- W-CDMA, PCS, Cellular Systems
- Multi-Carrier Applications

Parameter	Specification		Unit	Condition	
Parameter	Min.	Тур.	Max.	OIIIL	Condition
Small Signal Gain		18.4		dB	850MHz
		13.6		dB	1960MHz
	12.5	13.5	15.0	dB	2140MHz
		12.8		dB	2450MHz
Output Power at 1dB Compression		25.0		dBm	850MHz
		25.0		dBm	1960MHz
	24.0	25.0		dBm	2140 MHz
		25.0		dBm	2450MHz
Output Third Order Intercept Point		41.0		dBm	850MHz, P _{OUT} per tone=+11dBm, Tone Spacing=1MHz
		43.0		dBm	1960MHz
	39.0	42.0		dBm	2140MHz
		41.0		dBm	2450MHz
Noise Figure		4.5		dB	850MHz
		4.8	6.3	dB	1960MHz
		5.0		dB	2140MHz
		5.7		dB	2450MHz
Input VSWR		1.2:1			850MHz
		1.3:1	2.0:1		1960MHz
		1.2:1			2140MHz
		1.2:1			2450MHz
Operating Dissipated Power		575.0		mW	
Device Operating Current	90	115	135	mA	V _{CC} =5V
Thermal Resistance		70		°C/W	junction to backside

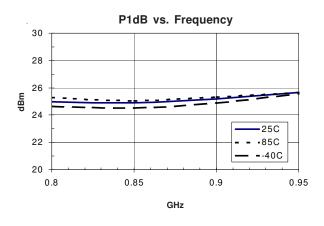
Absolute Maximum Ratings

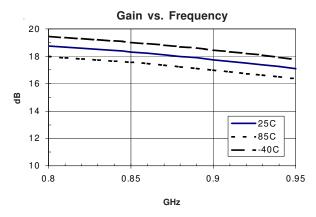
Parameter	Rating	Unit
Max Device Current (I _D)	240	mA
Max Device Voltage (V _{CC})	6	V
Max RF Input Power	100	mW
Max Dissipated Power	1500	mW
Max Junction Temperature (T _J)	165	°C
Operating Temperature Range (T _L)	-40 to + 85	°C
Max Storage Temperature	150	°C
ESD Rating - Human Body Model (HBM)	Class 1C	
Moisture Sensitivity Level	MSL 2	

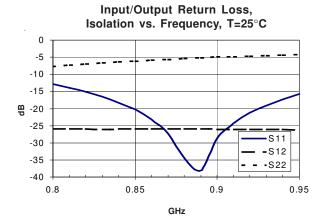

Caution! ESD sensitive device.

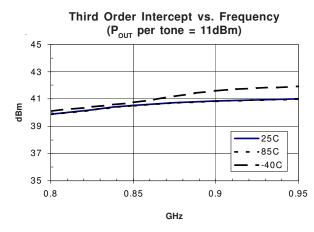
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

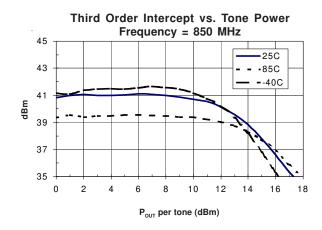
RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

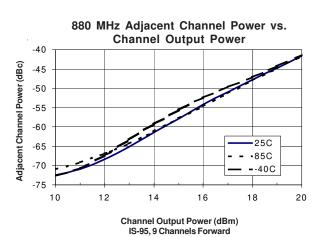

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

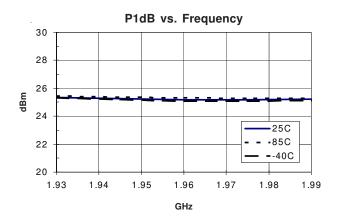

Recommended Mounting Configuration for Optimum RF and Thermal Performance

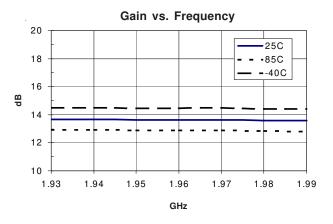




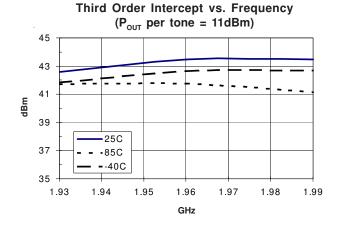

850MHz Application Circuit Data, V_{CC} =5V, I_D =115mA (Tuned for Output IP3)

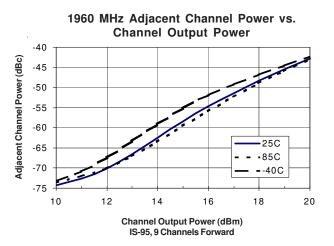






1960MHz Application Circuit Data, V_{CC} =5V, I_D =115mA (Tuned for Output IP3)

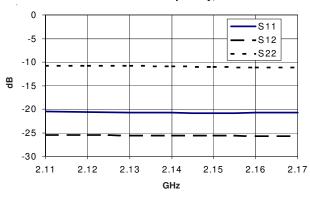



Isolation vs. Frequency, T=25°C 0 S11 -5 -S12 - ·S22 -10 **8** -15 -20 -25 -30 1.93 1.94 1.95 1.96 1.98 1.99 1.97

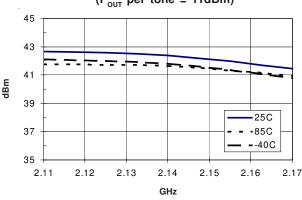
GHz

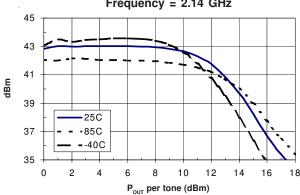
Input/Output Return Loss,

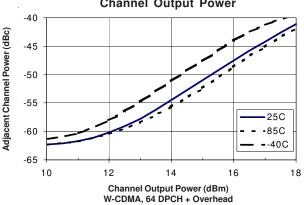




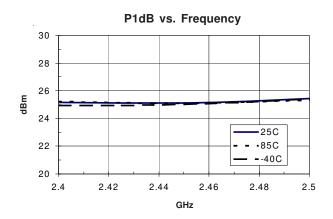
2140 MHz Application Circuit Data, V_{CC} =5V, I_D =115 mA (Tuned for Output IP3)

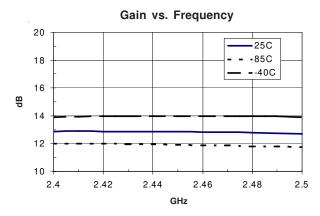


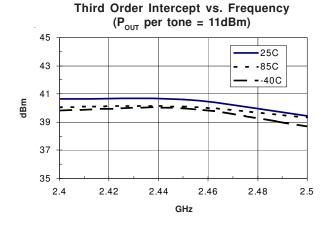

Input/Output Return Loss, Isolation vs. Frequency, T=25°C

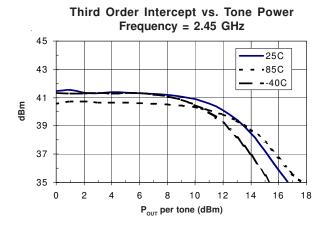

Third Order Intercept vs. Frequency (P_{OUT} per tone = 11dBm)

Third Order Intercept vs. Tone Power Frequency = 2.14 GHz

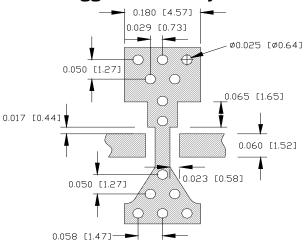


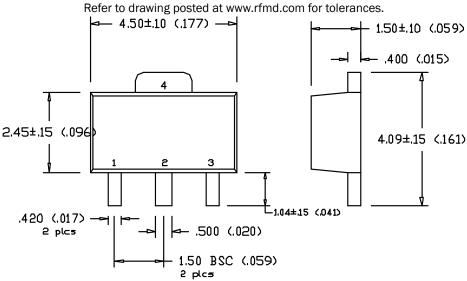

2140 MHz Adjacent Channel Power vs. Channel Output Power



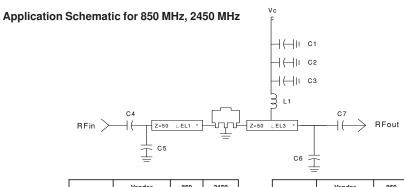

2450 MHz Application Circuit Data, V_{CC} =5V, I_D =115 mA (Tuned for Output IP3)

Input/Output Return Loss, Isolation vs. Frequency, T=25°C 0 S11 -5 **-**S12 -S22 -10 -15 -20 -25 -30 -35 2.42 2.44 2.4 2.46 2.48 2.5 GHz

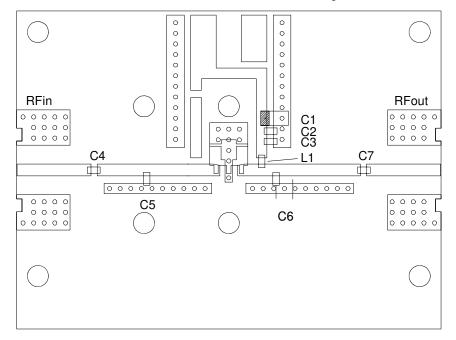



Pin	Function	Description
1	Base	Base pin
2	GND and	Connection to ground. Use via holes to reduce lead inductance. Place via holes as close to ground leads as possible.
	Emitter	
3	Collector	Collector pin
4	GND and	Connection to ground. Use via holes to reduce lead inductance. Place via holes as close to ground leads as possible.
	Emitter	

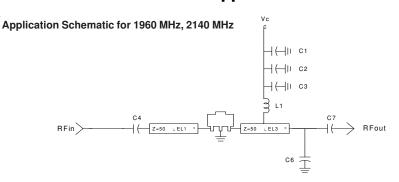
Suggested Pad Layout


Package Drawing

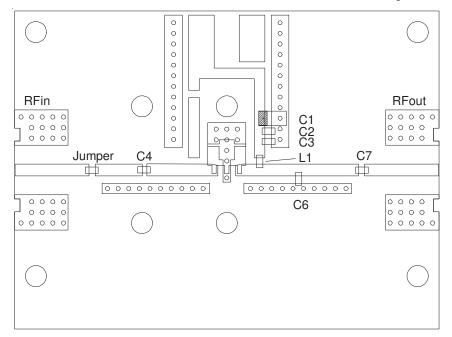
Dimensions in inches (millimeters)


850 MHz Application Schematic

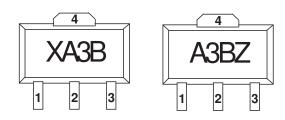
Ref. Des.	Vendor Series	850 MHz	2450 MHz
C1	Matsuo 267M3502104K	0.1uF 10%	0.1uF 10%
C2	Rohm MCH18	1000pF 5%	1000pF 5%
C3, C7	Rohm MCH18	47pF 5%	22pF 5%
C4	Rohm MCH18	47pF 5%	1.2pF ±0.25pF
C5	Rohm MCH18	5.6pF ±0.25pF	-


Ref. Des.	Vendor Series	850 MHz	2450 MHz
C6	Rohm MCH18	3.9pF ±0.25pF	1.0pF ±0.25pF
C6 Position		1	2
L1	Toko LL1608-FS	33nH 5%	15nH 5%
EL1		15	76
EL3		7.2	31.5

850 MHz Evaluation Board Layout


1960MHz and 2140MHz Application Schematic

Ref. Des.	Vendor Series	1960/2140 MHz
C1	Matsuo 267M3502104K	0.1uF 10%
C2	Rohm MCH18	1000pF 5%
C3, C7	Rohm MCH18	22pF 5%
C4	Rohm MCH18	2.2pF ±0.25pF
C5	Rohm MCH18	-


Ref. Des.	Vendor Series	1960/2140 MHz
C6	Rohm MCH18	1.0pF ±0.25pF
L1	Toko LL1608-FS	18nH 5%
EL1		35
EL3		30

1960MHz and 2140MHz Evaluation Board Layout

Part Identification

Alternate marking "SXA389BZ" or "SXA389B" on line one with Trace Code on line two.

Ordering Information

Part Number	Description	Devices/Container
SXA-389BZSB		5 Piece Sample Bag
SXA-389BZSQ		25 Piece Sample Bag
SXA-389BZSR		100 Piece 7" Sample Reel
SXA-389BZ		1000 Piece 7" Sample Reel
SXA-389BZPCK1	850 MHz PCBA	Evaluation Board and 5 Piece Sample Bag
SXA-389BZPCK2	1960 MHz PCBA	Evaluation Board and 5 Piece Sample Bag