

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

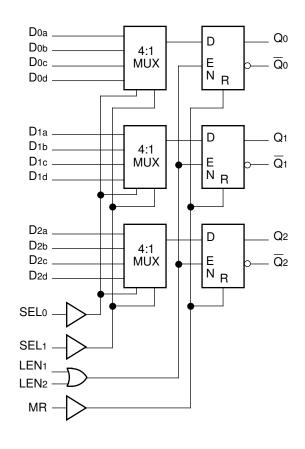
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3-BIT 4:1 MUX-LATCH

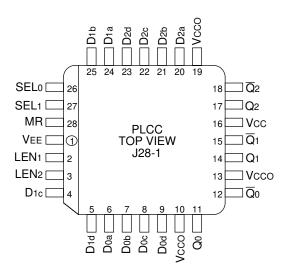
SY10E156 SY100E156 FINAL

FEATURES

- 900ps max. D to output
- Extended 100E VEE range of -4.2V to -5.5V
- 800ps max. LEN to output
- **■** Differential outputs
- Asynchronous Master Reset
- Dual latch enables
- Fully compatible with industry standard 10KH, 100K ECL levels
- Internal 75K Ω input pulldown resistors
- Fully compatible with Motorola MC10E/100E156
- Available in 28-pin PLCC package


DESCRIPTION

The SY10/100E156 offer three 4:1 multiplexers followed by latches with differential outputs, designed for use in new, high-performance ECL systems. The two external latch enable signals (LEN1 and LEN2) are gated through a logical OR operation before use as control for the three latches. When both LEN1 and LEN2 are at a logic LOW, the latches are transparent, thus presenting the data from the multiplexers at the output pins. If either LEN1 or LEN2 (or both) are at a logic HIGH, the outputs are latched.


The multiplexer operation is controlled by the Select (SEL₀, SEL₁) signals which select one of the four bits of input data at each mux to be passed through.

The MR (Master Reset) signal operates asynchronously to take all outputs to a logic LOW.

BLOCK DIAGRAM

PIN CONFIGURATION

PIN NAMES

Pin	Function				
D0x-D2x	Input Data				
SEL0, SEL1	Select Inputs				
LEN1, LEN2	Latch Enables				
MR	Master Reset				
Q0-Q2	True Outputs				
<u>Q</u> 0− <u>Q</u> 2	Inverted Outputs				
Vcco	Vcc to Output				

TRUTH TABLES

LEN ₁	LEN ₂	Latch
L	L	Transparent
Н	X	Latched
Х	Н	Latched

SEL ₀	SEL1	Data
L	L	а
Н	L	b
L	Н	С
Н	Н	d

DC ELECTRICAL CHARACTERISTICS

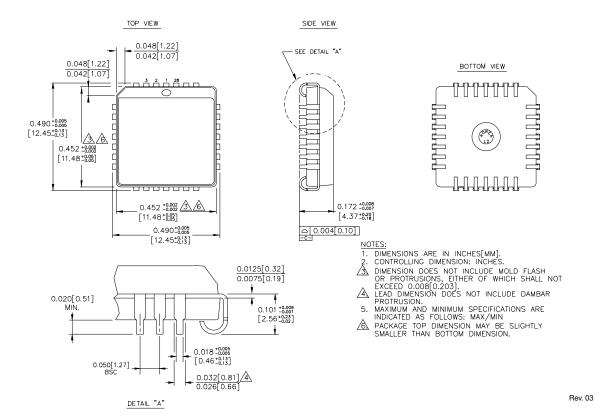
VEE = VEE (Min.) to VEE (Max.); VCC = VCCO = GND

		TA = 0°C		TA = +25°C			TA = +85°C					
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
Iн	Input HIGH Current	_	_	150	_	_	150	_	_	150	μΑ	_
IEE	Power Supply Current										mA	_
	10E	l —	75	90	—	75	90	_	75	90		
	100E	—	75	90	—	75	90	—	86	103		

AC ELECTRICAL CHARACTERISTICS

VEE = VEE (Min.) to VEE (Max.); VCC = VCCO = GND

		1	ΓA = 0°	С	TA	\ = +25	°C	TA	\ = +85°	Ď.		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
tPLH tPHL	Propagation Delay to Output D SEL0 SEL1 LEN MR	400 550 450 350 350	600 775 650 500 600	900 1050 900 800 825	400 550 450 350 350	600 775 650 500 600	900 1050 900 800 825	400 550 450 350 350	600 775 650 500 600	900 1050 900 800 825	ps	_
ts	Set-up Time D SEL0 SEL1	400 700 600	275 300 400		400 700 600	275 300 400		400 700 600	275 300 400		ps	_
tH	Hold Time D SEL0 SEL1	300 100 200	-275 -300 -400	_	300 100 200	-275 -300 -400		300 100 200	-275 -300 -400		ps	_
trr	Reset Recovery Time	800	600	_	800	600	_	800	600	_	ps	_
tpw	Minimum Pulse Width, MR	400	_	_	400	_	_	400	_		ps	_
tskew	Within-Device Skew	_	50	_	_	50	_	_	50		ps	1
tr tf	Rise/Fall Time 20% to 80%	275	475	700	275	475	700	275	475	700	ps	_


NOTE:

1. Within-device skew is defined as identical transitions on similar paths through a device.

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range
SY10E156JC	J28-1	Commercial
SY10E156JCTR	J28-1	Commercial
SY100E156JC	J28-1	Commercial
SY100E156JCTR	J28-1	Commercial

28 LEAD PLCC (J28-1)

SY10E156 SY100E156

Micrel

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 2000 Micrel Incorporated