: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

$\square 1000 \mathrm{MHz}$ min. operating frequency
\square Extended 100E Vee range of -4.2 V to -5.5 V
■ 800ps max. clock to output
■ Single-ended outputs
■ Asynchronous Master Reset
■ Dual clocks
■ Fully compatible with industry standard 10KH, 100K ECL levels
■ Internal $75 \mathrm{~K} \Omega$ input pulldown resistors
■ ESD protection of 2000 V
■ Fully compatible with Motorola MC10E/100E167
■ Available in 28 -pin PLCC package

BLOCK DIAGRAM

DESCRIPTION

The SY10/100E167 offer six 2:1 multiplexers followed by D flip-flops with single-ended outputs, designed for use in new, high-performance ECL systems. The Select (SEL) control allows one of the two data inputs to the multiplexer to pass through. The two external clock signals (CLK1, CLK2) are gated through a logical OR operation before use as control for the six flip-flops. The selected data are transferred to the flip-flops on the rising edge of CLK1 or CLK2 (or both).

The multiplexer operation is controlled by the Select (SEL) signal which selects one of the two bits of input data at each mux to be passed through.

When a logic HIGH is applied to the Master Reset (MR) signal, it operates asychronously to take all outputs Q to a logic LOW.

PIN CONFIGURATION

PIN NAMES

Pin	Function
D0a-D5a	Input Data a
Dob-D5b	Input Data b
SEL	Select Input
CLK1, CLK2	Clock Inputs
MR	Master Reset
Q0-Q5	Data Outputs
Vcco	Vcc to Output

TRUTH TABLE

SEL	Data
H	a
L	b

DC ELECTRICAL CHARACTERISTICS

Vee = Vee (Min.) to Vee (Max.); $\mathrm{Vcc}=\mathrm{Vcco}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$			$\mathrm{TA}=+25^{\circ} \mathrm{C}$			TA $=+85^{\circ} \mathrm{C}$			Unit	Condition
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
IIH	Input HIGH Current	-	-	150	-	-	150	-	-	150	$\mu \mathrm{A}$	-
IEE	Power Supply Current $\begin{gathered} 10 \mathrm{E} \\ 100 \mathrm{E} \end{gathered}$	-	$\begin{aligned} & 94 \\ & 94 \end{aligned}$	$\begin{aligned} & 113 \\ & 113 \end{aligned}$	-	$\begin{aligned} & 94 \\ & 94 \end{aligned}$	$\begin{aligned} & 113 \\ & 113 \end{aligned}$	-	$\begin{gathered} 94 \\ 108 \end{gathered}$	$\begin{aligned} & 113 \\ & 130 \end{aligned}$	mA	-

AC ELECTRICAL CHARACTERISTICS

VEE = VEe (Min.) to Vee (Max.); Vcc = Vcco = GND

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$			TA $=+25^{\circ} \mathrm{C}$			TA $=+85^{\circ} \mathrm{C}$			Unit	Condition
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.		
fmax	Max. Toggle Frequency	1000	1400	-	1000	1400	-	1000	1400	-	MHz	-
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay to Output CLK MR	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 650 \\ & 650 \end{aligned}$	$\begin{aligned} & 800 \\ & 850 \end{aligned}$	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 650 \\ & 650 \end{aligned}$	$\begin{aligned} & 800 \\ & 850 \end{aligned}$	$\begin{aligned} & 450 \\ & 450 \end{aligned}$	$\begin{aligned} & 650 \\ & 650 \end{aligned}$	$\begin{aligned} & 800 \\ & 850 \end{aligned}$	ps	-
ts	Set-up Time D SEL	$\begin{aligned} & 100 \\ & 275 \end{aligned}$	$\begin{aligned} & -50 \\ & 125 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 275 \end{aligned}$	$\begin{aligned} & -50 \\ & 125 \end{aligned}$	-	$\begin{aligned} & 100 \\ & 275 \end{aligned}$	$\begin{aligned} & -50 \\ & 125 \end{aligned}$	-	ps	-
th	Hold Time D SEL	$\begin{gathered} 300 \\ 75 \end{gathered}$	$\begin{array}{\|c} 50 \\ -125 \end{array}$	-	$\begin{gathered} 300 \\ 75 \end{gathered}$	$\begin{gathered} 50 \\ -125 \end{gathered}$	-	$\begin{gathered} 300 \\ 75 \end{gathered}$	$\left.\begin{gathered} 50 \\ -125 \end{gathered} \right\rvert\,$	-	ps	-
tRR	Reset Recovery Time	750	550	-	750	550	-	750	550	-	ps	-
tPW	Minimum Pulse Width CLK, MR	400	-	-	400	-	-	400	-	-	ps	-
tskew	Within-Device Skew	-	75	-	-	75	-	-	75	-	ps	1
$\begin{aligned} & \mathrm{tr} \\ & \mathrm{tf} \\ & \hline \end{aligned}$	Rise/Fall Time 20\% to 80%	300	450	800	300	450	800	300	450	800	ps	-

NOTE:

1. Within-device skew is defined as identical transitions on similar paths through a device.

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range
SY10E167JC	J28-1	Commercial
SY10E167JCTR	J28-1	Commercial
SY100E167JC	J28-1	Commercial
SY100E167JCTR	J28-1	Commercial

28 LEAD PLASTIC LEADED CHIP CARRIER (J28-1)

