imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

5-BIT DIFFERENTIAL REGISTER

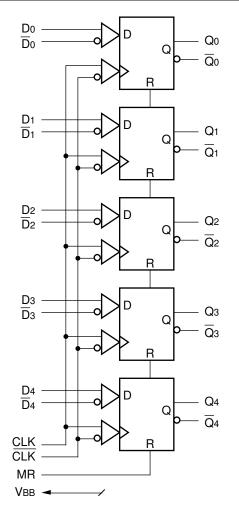
SY10E452 SY100E452

FEATURES

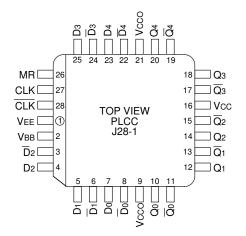
- Differential D, CLK and Q
- Extended 100E VEE range of -4.2V to -5.5V
- VBB output for single-ended use
- 1100MHz min. toggle frequency
- Asynchronous Master Reset
- Fully compatible with Motorola MC10E/100E452
- Available in 28-pin PLCC package

DESCRIPTION

The SY10/100E452 are 5-bit differential registers with differential data (inputs and outputs) and clock. The registers are triggered by a positive transition of the positive clock (CLK) input. A high on the Master Reset (MR) asynchronously resets all registers so that the Q outputs go LOW.


The differential input structures are clamped so that the inputs of unused registers can be left open without upsetting the bias network of the devices. The clamping action will assert the /D and the /CLK sides of the inputs. Because of the edge-triggered flip-flop nature of the devices, simultaneously opening both the clock and data inputs will result in an output which reaches an unidentified but valid state.

The fully differential design of the devices makes them ideal for very high frequency applications where a registered data path is necessary.


PIN NAMES

Pin	Function
D [0:4], /D [0:4]	Differential Data Inputs
MR	Master Reset Input
CLK, /CLK	Differential Clock Input
VBB	VBB Reference Output
Q [0:4], Q [0:4]	Differential Data Outputs
Vcco	Vcc to Output

PACKAGE/ORDERING INFORMATION

28-Pin PLCC (J28-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish		
SY10E452JI	J28-1	Industrial	SY10E452JI	Sn-Pb		
SY10E452JITR ⁽²⁾	J28-1	Industrial	SY10E452JI	Sn-Pb		
SY100E452JI	J28-1	Industrial	SY100E452JI	Sn-Pb		
SY100E452JITR ⁽²⁾	J28-1	Industrial	SY100E452JI	Sn-Pb		
SY10E452JC	J28-1	Commercial	SY10E452JC	Sn-Pb		
SY10E452JCTR ⁽²⁾	J28-1	Commercial	SY10E452JC	Sn-Pb		
SY100E452JC	Y100E452JC J28-1		SY100E452JC	Sn-Pb		
SY100E452JCTR ⁽²⁾	J28-1	Commercial	SY100E452JC	Sn-Pb		
SY10E452JY ⁽³⁾	J28-1	Industiral	SY10E452JY with Pb-Free bar-line indicator	Matte-Sn		
SY10E452JYTR ^(2, 3)	J28-1	Industrial	SY10E452JY with Pb-Free bar-line indicator	Matte-Sn		
SY100E452JY ⁽³⁾	J28-1	Industrial	SY100E452JY with Pb-Free bar-line indicator	Matte-Sn		
SY100E452JYTR ^(2, 3)	J28-1	Industrial	SY100E452JY with Pb-Free bar-line indicator	Matte-Sn		

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC electricals only.

2. Tape and Reel.

DC ELECTRICAL CHARACTERISTICS

VEE = VEE (Min.) to VEE (Max.); VCC = VCCO = GND

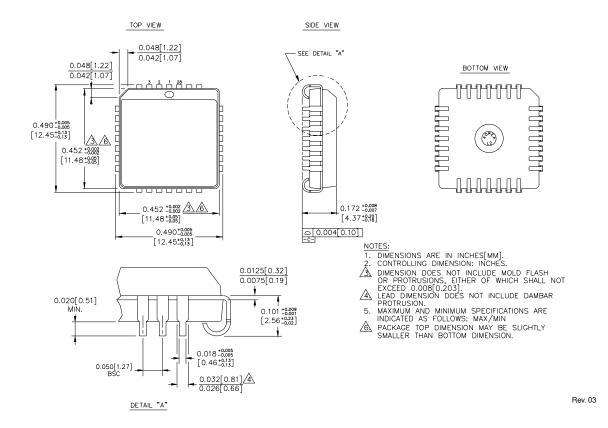
			TA = -40°C			TA = 0°C			TA = +25°C			TA = +85°C			
Symbol	Parameter		Min.	Тур.	Max.	Unit									
VBB	Output Reference Voltage	10E 100E	-1.43 -1.38		-1.30 -1.26	-1.38 -1.38	_	-1.27 -1.26	-1.35 -1.38	_	-1.25 -1.26	-1.31 -1.38	_	-1.19 -1.26	V
Ін	Input HIGH Current		_	_	150	_	_	150	_	_	150	_	_	150	μA
IEE	Power Supply Current	10E 100E		74 74	89 89		74 74	89 89		74 74	89 89	—	74 85	89 102	mA
VCMR	Common Mode Rar	nge ⁽¹⁾	-2.0	_	-0.4	-2.0	—	-0.4	-2.0	_	-0.4	-2.0	—	-0.4	V

Note:

1. VCMR is referenced to the most positive side of the differential input signal. Normal operation is obtained when the input signals are within the VCMR range and the input swing is greater than VPP (min.) and <1V.

AC ELECTRICAL CHARACTERISTICS

VEE = VEE (Min.) to VEE (Max.); VCC = VCCO = GND


		TA = -40°C			TA = 0°C			TA = +25°C			TA = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Unit									
fmax	Max. Toggle Frequency	1000	1400	_	1100	1400	_	1100	1400	_	1100	1400	_	MHz
tpd	Propagation Delay to Output CLK (Diff) CLK (SE) MR	425 375 375	600 600 625	850 900 900	475 425 425	600 600 625	800 850 850	475 425 425	600 600 625	800 850 850	475 425 425	600 600 625	800 850 850	ps
ts	Set-up Time, D	175	-50	_	150	-50	_	150	-50	_	150	-50		ps
tн	Hold Time, D	225	50	—	200	50	_	200	50	_	200	50		ps
tRR	Reset Recovery Time	750	450	_	700	450	_	700	450	_	700	450	_	ps
tPW	Minimum Pulse Width CLK MR	400 400	_	_	400 400		_	400 400	_		400 400			ps
tskew	Within-Device Skew ⁽¹⁾	_	50	_	_	50	—	—	50		_	50		ps
VPP (AC)	Minimum Input Swing ⁽²⁾	150			150			150			150			mV
tr tf	Rise/Fall Time 20–80%	250	475	725	275	475	675	275	475	675	275	475	675	ps

Notes:

1. Within-device skew is defined as identical transitions on similar paths through a device.

2. Minimum input swing for which AC parameters are guaranteed.

28-PIN PLCC (J28-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.