

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

5V/3.3V VARIABLE OUTPUT **SWING DIFFERENTIAL RECEIVER**

SY100EL16VS

FEATURES

- 3.3V and 5V power supply options
- High bandwidth output transitions
- Internal 75K Ω pull-down resistors on inputs
- Functionally equivalent to SY100EL16V with variable output swing
- Improved output waveform characteristics
- Available in 8-pin SOIC and 8-pin (3mm) MSOP

DESCRIPTION

The SY100EL16VS are differential receivers with variable output swing. The devices are functionally equivalent to the EL16V devices with an input that control the amplitude of the outputs.

The operational range of the EL16VS control input is from VBB (max. swing) to VCC (min. swing). Simple control of the output swing can be obtained by a variable resistor between the VBB pin and VCC with the wiper driving VCTRL.

The EL16VS provides a VBB output for either singleended use or as a DC bias for AC coupling to the device. The VBB pin should be used only as a bias for the EL16VS as its current sink/source capability is limited. Whenever used, the VBB pin should be bypassed to ground via a 0.01μF capacitor.

Under open input conditions (pulled to VEE), internal input clamps will force the Q output LOW.

PIN NAMES

Pin	Function
D	Data Inputs
Q	Data Outputs
VBB	Reference Voltage Output
VCTRL	Output Swing Control

TYPICAL VOLTAGE OUTPUT SWING

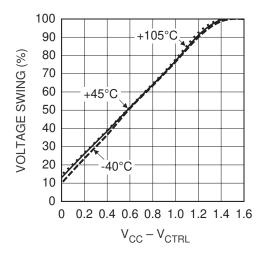
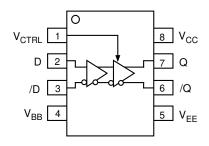



Figure 1. Typical Voltage Output Swing Vcc = 3.3V or 5V

Amendment:/0 Issue Date: August 2007

Micrel, Inc. SY100EL16VS

PACKAGE/ORDERING INFORMATION

8-Pin SOIC and 8-PinMSOP

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish	
SY100EL16VSKC	K8-1	Commercial	XLEL16VS	Sn-Pb	
SY100EL16VSKCTR ⁽²⁾	K8-1	Commercial	XLEL16VS	Sn-Pb	
SY100EL16VSZC	Z8-1	Commercial	XEL16VS	Sn-Pb	
SY100EL16VSZCTR ⁽²⁾	Z8-1	Commercial	XEL16VS	Sn-Pb	
SY100EL16VSKI	K8-1	Industrial	XLEL16VS	Sn-Pb	
SY100EL16VSKITR ⁽²⁾	K8-1	Industrial	XLEL16VS	Sn-Pb	
SY100EL16VSZI	Z8-1	Industrial	XEL16VS	Sn-Pb	
SY100EL16VSZITR ⁽²⁾	Z8-1	Industrial	XEL16VS	Sn-Pb	
SY100EL16VSKG ⁽³⁾	K8-1	Industrial	XLEL16VS with Pb-Free bar-line indicator	Pb-Free NiPdAu	
SY100EL16VSKGTR ^(2, 3)	K8-1	Industrial	XLEL16VS with Pb-Free bar-line indicator	Pb-Free NiPdAu	
SY100EL16VSZG ⁽³⁾	Z8-1	Industrial	XEL16VS with Pb-Free bar-line indicator	Pb-Free NiPdAu	
SY100EL16VSZGTR ^(2, 3)	Z8-1	Industrial	XEL16VS with Pb-Free bar-line indicator	Pb-Free NiPdAu	

Notes

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

DC ELECTRICAL CHARACTERISTICS(1)

VEE = VEE (Min.) to VEE (Max.); VCC = GND

		Ta = -40°C			Ta = 0°C			TA = +25°C			Ta = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
IEE	Power Supply Current	_	18	22	9	18	22	9	18	22	9	21	26	mA
Vвв	Output Reference Voltage	-1.38	_	-1.26	-1.38		-1.26	-1.38	_	-1.26	-1.38	_	-1.26	V
Іін	Input HIGH -D, \overline{D} Current -VCTRL	_	_	150 40	_		150 40			150 40			150 40	μΑ
Vol	Output LOW Voltage ⁽²⁾ VCTRL = VBB	-1890	_	-1620	-1870	_	-1680	-1870	-1775	-1680	-1870	_	-1680	mV
Vol	Output LOW Voltage ⁽²⁾ VCTRL = VCC	-1180	_	-975	-1135	_	-990	-1135	-1065	-990	-1135	_	-990	mV
Vон	Output HIGH Voltage ⁽³⁾	-1085		-880	-1025	_	-880	-1025	-955	-880	-1025	_	-880	mV

NOTES:

1. Parametric values specified at: 100EL16VS Series: -3.0V to -5.5V.

2. If VCTRL is an open circuit, use the VoH (max. & min.) and VoL (VCTRL = VBB: max only) limits.

3. VCC ≤ VCTRL ≤ VEE.

AC ELECTRICAL CHARACTERISTICS(1)

VEE = VEE (Min.) to VEE (Max.); VCC = GND

		Ta = -40°C			$TA = 0^{\circ}C$			TA = +25°C			TA = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
tPLH tPHL	Propagation D (Diff) Delay to Output D (SE)	175 125	 250	325 425	175 125	 250	325 375	175 125	 250	325 375	205 155	 280	355 405	ps
tskew	Duty Cycle Skew ⁽²⁾ (Diff)	_	5	_	_	5	20	_	5	20	_	5	20	ps
VPP	Minimum Input Swing(3)	150	_	_	150	_	_	150	_	_	150	_	_	mV
VCMR	Common Mode Range ⁽⁴⁾	-1.3	_	-0.4	-1.4	_	-0.4	-1.4	_	-0.4	-1.4	_	-0.4	V
tr tf	Output Rise/Fall Times Q (20% to 80%)		160	260	_	160	260	_	160	260	_	160	260	ps

NOTES:

- 1. Parametric values specified at: 100EL16VS Series: -3.0V to -5.5V.
- 2. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device.
- 3. Minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈40 when output has a full swing.
- 4. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPP min. and 1V. The lower end of the CMR range varies 1:1 with VEE. The numbers in the spec table assume a nominal VEE = -3.3V. Note for PECL operation, the VCMR (min) will be fixed at 3.3V |VCMR (min)|.

Micrel, Inc. SY100EL16VS

APPLICATION IMPLEMENTATION

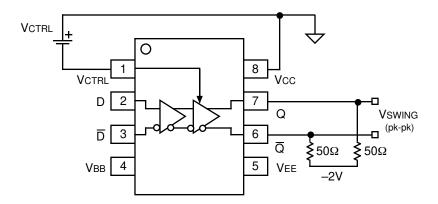
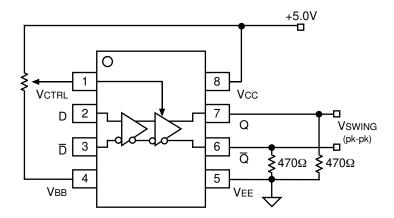
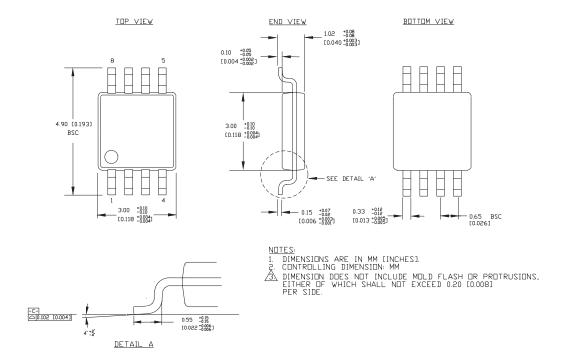
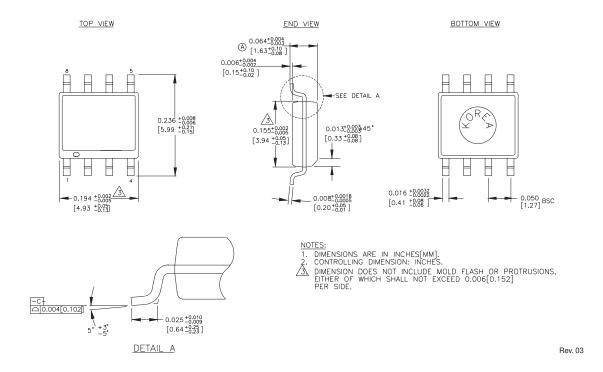


Figure 2. Voltage Source Implementation


Figure 3. Alternative Implementation

8-PIN MSOP (K8-1)

Micrel, Inc. SY100EL16VS

8-PIN SOIC .150" WIDE (Z8-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.