

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NOT RECOMMENDED FOR NEW DESIGNS

5V/3.3V ÷ 2 DIVIDER

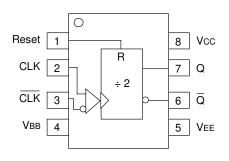
Precision Edge® SY10EL32V SY100EL32V

FEATURES

- 3.3V and 5V power supply options
- 510ps propagation delay
- 3.0GHz toggle frequency
- High bandwidth output transistions
- Internal 75K Ω input pull-down resistors
- Available in 8-pin SOIC package

DESCRIPTION

The SY10/100EL32V are integrated $\div 2$ dividers. The differential clock inputs and the VBB allow a differential, single-ended or AC-coupled interface to the device. If used, the VBB output should be bypassed to ground with a $0.01\mu F$ capacitor. Also note that the VBB is designed to be used as an input bias on the EL32V only; the VBB output has limited current sink and source capability.


The reset pin is asynchronous and is asserted on the rising edge. Upon power-on, the internal flip-flop will attain a random state; the reset allows for the synchronization of multiple EL32Vs in a system.

PIN NAMES

Pin	Function
CLK	Clock Inputs
Reset	Asynchronous Reset
VBB	Reference Voltage Output
Q	Data Outputs

Precision Edge is a registered trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION

8-Pin SOIC (Z8-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10EL32VZC	Z8-1	Commercial	HEL32V	Sn-Pb
SY10EL32VZCTR ⁽²⁾	Z8-1	Commercial	HEL32V	Sn-Pb
SY100EL32VZC	Z8-1	Commercial	XEL32V	Sn-Pb
SY100EL32VZCTR ⁽²⁾	Z8-1	Commercial	XEL32V	Sn-Pb
SY10EL32VZI	Z8-1	Industrial	HEL32V	Sn-Pb
SY10EL32VZITR ⁽²⁾	Z8-1	Industrial	HEL32V	Sn-Pb
SY100EL32VZI	Z8-1	Industrial	XEL32V	Sn-Pb
SY100EL32VZITR ⁽²⁾	Z8-1	Industrial	XEL32V	Sn-Pb
SY10EL32VZG ⁽³⁾	Z8-1	Industrial	HEL32V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY10EL32VZGTR ^(2, 3)	Z8-1	Industrial	HEL32V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100EL32VZG ⁽³⁾	Z8-1	Industrial	XEL32V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100EL32VZGTR ^(2, 3)	Z8-1	Industrial	XEL32V with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

DC ELECTRICAL CHARACTERISTICS(1)

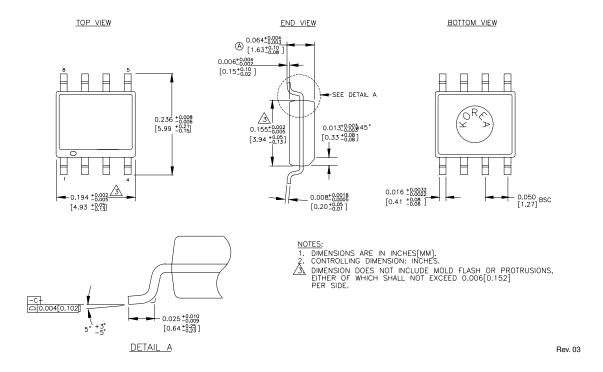
VEE = VEE (Min.) to VEE (Max.); VCC = GND

	-			4 = -40 °	C	TA = 0°C			TA = +25°C			Ta = +85°C			
Symbol	Parameter		Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
IEE	Power Supply														mA
	Current	10EL	_	25	30	_	25	30	_	25	30	_	25	30	
	1	100EL	_	25	30	_	25	30	_	25	30	_	29	35	
VBB	Output Reference	æ													٧
	Voltage	10EL	-1.43	_	-1.30	-1.38	_	-1.27	-1.35	_	-1.25	-1.31	_	-1.19	
	1	100EL	-1.38	_	-1.26	-1.38	1	-1.26	-1.38	1	-1.26	-1.38	_	-1.26	
Iн	Input HIGH Curre	ent	_		150	_		150			150	_	_	150	μΑ

NOTE:

1. Parametric values specified at: 10/100EL32V Series: -3.0V to -5.5V.

AC ELECTRICAL CHARACTERISTICS(1)


VEE = VEE (Min.) to VEE (Max.); VCC = GND

		Ta = -40°C			Ta = 0°C			Ta = +25°C			Ta = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Unit									
fMAX	Maximum Toggle Frequency	2.2	3.0		2.6	3.0	_	2.6	3.0		2.6	3.0	_	GHz
tPD	Prop Delay to Output D Reset to Q	360 390	500 540	640 690	410 440	500 540	590 640	420 440	510 540	600 640	450 450	540 550	630 650	ps
VPP	Minimum Input Swing ⁽²⁾	150	_	_	150	_	_	150	_	_	150	_	_	mV
VCMR	Common Mode Range ⁽³⁾	-1.3	_	-0.4	-1.4	_	-0.4	-1.4	_	-0.4	-1.4	_	-0.4	V
tr tf	Output Rise/Fall Times Q (20% to 80%)	100	225	350	100	225	350	100	225	350	100	225	350	ps

NOTES:

- 1. Parametric values specified at: 10/100EL32V Series: -3.0V to -5.5V.
- 2. Minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈40.
- 3. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPP min. and 1V. The lower end of the CMR range varies 1:1 with VEE. The numbers in the spec table assume a nominal VEE = -3.3V. Note for PECL operation, the VCMR (min) will be fixed at 3.3V |VCMR (min)|.

8-PIN SOIC .150" WIDE (Z8-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.