imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V 4:1 DIFFERENTIAL MULTIPLEXER

SY100EL57L

FEATURES

- 3.3V power supply
- Useful as either 4:1 or 2:1 multiplexer
- VBB output for single-ended operation
- 75KΩ internal input pulldown resistors
- Available in 150 mil 16-pin SOIC package

DESCRIPTION

The SY100EL57L is a full differential 4:1 multiplexer. By leaving the SEL1 line open (pulled LOW via the input pulldown resistors) the device can also be used as a differential 2:1 multiplexer with SEL0 input selecting between D0 and D1. The fully differential architecture of the EL57L makes it ideal for use in low skew applications such as clock distribution.

The SEL1 is the most significant select line. The binary number applied to the select inputs will select the same numbered data input (i.e., 00 selects D0).

Multiple VBB outputs are provided for single-ended or AC coupled interfaces. In these scenarios, the VBB output should be connected to the data bar inputs and bypassed via a 0.01μ F capacitor to ground. Note that the VBB output can source/sink up to 0.5mA of current without upsetting the voltage level.

TRUTH TABLE

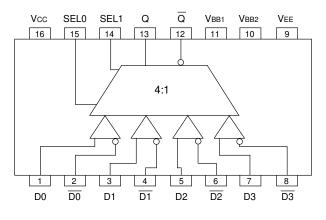
SEL1	SEL0	DATA OUT
L	L	D0
L	Н	D1
Н	L	D2
Н	Н	D3

PIN NAMES

Pin	Function
D0-3	Differential Data Inputs
SEL0, 1	Mux Select Inputs
VBB1, 2	Reference Outputs
Q	Data Outputs

PACKAGE/ORDERING INFORMATION

Ordering Information⁽¹⁾


Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100EL57LZC	Z16-2	Commercial	SY100EL57LZC	Sn-Pb
SY100EL57LZCTR ⁽²⁾	Z16-2	Commercial	SY100EL57LZC	Sn-Pb
SY100EL57LZI	Z16-2	Industrial	SY100EL57LZI	Sn-Pb
SY100EL57LZITR ⁽²⁾	Z16-2	Industrial	SY100EL57LZI	Sn-Pb
SY100EL57LZG ⁽³⁾	Z16-2	Industrial	SY100EL57LZG with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100EL57LZGTR ^(2, 3)	Z16-2	Industrial	SY100EL57LZG with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

1. Contact factory for die availability. Dice are guaranteed at T_{A} = 25°C, DC Electricals only.

2. Tape and Reel.

3. Pb-Free package is recommended for new designs.

16-Pin Narrow SOIC (Z16-2)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
VEE	Power Supply (Vcc = 0V)	-7.0 to 0	V
VIN	Input Voltage (Vcc = 0V)	0 to -4.3	V
Ιουτ	Output Current - Continuous - Surge	50 100	mA
TLEAD	Lead Temperature (soldering, 20sec.)	+260	°C
Та	Operating Temperature Range	-40 to +85	°C
VEE	Operating Range ^(1,2)	-4.0 to -3.0	V

Notes:

1. Absolute maximum ratings, beyond which, device life may be impaired, unless otherwise specified on an individual data sheet.

2. Parametric values specified at: Power Supply Range 100EL57L Series: -3.0V to -3.8V.

100EL DC CHARACTERISTICS

$VEE = VEE (Min) - VEE (Max); VCC = GND^{(1)}$

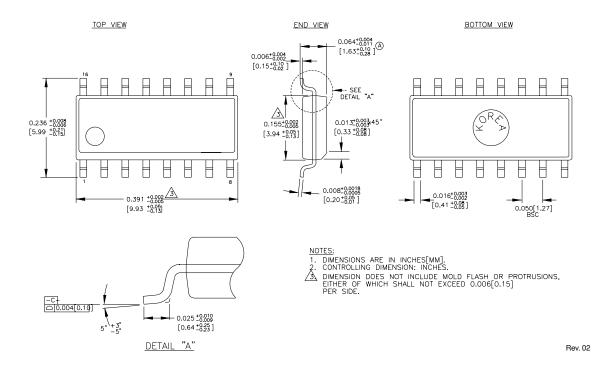
		Т	A = −40°C	;	TA	$TA = 0^{\circ}C$ to $85^{\circ}C$			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
Vон	Output HIGH Voltage	-1085	-1005	-880	-1025	-955	-880	mV	VIN = VIH (Max) or VIL (Min)
Vol	Output LOW Voltage	-1830	-1695	-1555	-1810	-1705	-1620	mV	VIN = VIH (Max) or VIL (Min)
Vона	Output HIGH Voltage	-1095		-	-1035			mV	VIN = VIH (Min) or VIL (Max)
Vola	Output LOW Voltage	—	_	-1555	—	—	-1610	mV	VIN = VIH (Min) or VIL (Max)
VIH	Input HIGH Voltage	-1165	_	-880	-1165	_	-880	mV	
VIL	Input LOW Voltage	-1810	—	-1475	-1810	—	-1475	mV	
lil	Input LOW Current	0.5	_	_	0.5	_	_	μA	VIN = VIL (Max)

Note:

1. Outputs are terminated through a 50Ω resistor to -2.0V except where otherwise specified on the individual data sheets.

DC ELECTRICAL CHARACTERISTICS

VEE = VEE (Min) - VEE (Max); VCC = GND


		TA = −40°C			TA = 0°C			TA = +25°C			TA = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
IEE	Power Supply Current	_	-15	-24		-15	-24	_	-15	-24		-15	-27	mA
VBB	Output Reference Voltage	-1.38		-1.26	-1.38	—	-1.26	-1.38	—	-1.26	-1.38		-1.26	V
Ін	Input HIGH Current	_	_	150	_	_	150	_	_	150	_	_	150	μA

AC ELECTRICAL CHARACTERISTICS

 $\mathsf{VEE} = \mathsf{VEE} \; (\mathsf{Min}) \; \text{-} \; \mathsf{VEE} \; (\mathsf{Max}); \; \mathsf{VCC} = GND$

		TA = -40°C		TA = 0°C			T	A = +25	°C	T				
Symbol	Parameter	Min.	Тур.	Max.	Unit									
tPD	Propagation Delay DATA to Q/Q SEL to Q/Q	350 350		550 600	350 350		550 600	360 350		560 610	380 380		580 630	ps
tskew	Input Skew DATA to Q	_		50			50			50		_	50	ps
Vpp	Minmum Input Swing DATA	150	_	_	150	_	_	150	_	_	150	_	_	mV
VCMR	Common Mode Range DATA	-2.0	_	-0.4	-2.0	_	-0.4	-2.0	_	-0.4	-2.0	_	-0.4	V
tr tf	Output Rise/Fall Times Q (20% - 80%)	125	—	575	125	—	520	125	—	520	125	_	520	ps

16-PIN SOIC .150" WIDE (Z16-2)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

тец + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.