imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

5V/3.3V TRIPLE ECL/LVECL-TO-PECL/LVPECL TRANSLATOR

FEATURES

- 3.3V and 5V power supply options
- 500ps propagation delay
- Fully differential design
- Supports both standard and low voltage operation
- Available in 20-pin SOIC package

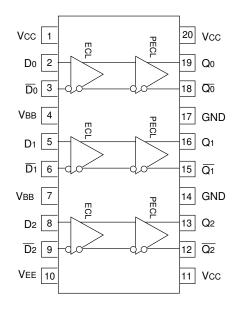
DESCRIPTION

The SY100EL90V is a triple ECL/LVECL-to-PECL/ LVPECL translator. The device can translate over all combinations of supply voltages: -5V ECL to 5V PECL, -5V ECL to 3.3V LVPECL, -3.3V LVECL to 5V PECL or -3.3V LVECL to 3.3V LVPECL.

A VBB output is provided for interfacing with single ended ECL signals at the input. If a single ended input is to be used, the VBB output should be connected to the \overline{D} input. The active signal would then drive the D input. When used, the VBB output should be bypassed to via a 0.01 μ F capacitor. The VBB output is designed to act as the switching reference for the EL90V under single ended input switching conditions. As a result this pin can only source/sink up to 0.5mA of current.

To accomplish the level translation the EL90V requires three power rails. The Vcc supply should be connected to the positive supply, and the VEE pin should be connected to the negative power supply. The GND pins as expected are connected to the system ground plane. Both VEE and Vcc should be bypassed to ground via 0.01μ F capacitors.

Under open input conditions, the \overline{D} input will be biased at Vcc/2 and the D input will be pulled to VEE. This condition will force the Q output to a LOW, ensuring stability.


FUNCTION TABLE

Function	Vcc	GND	Vee
-5V ECL to 5V PECL	5V	0V	–5V
-5V ECL to 3.3V LVPECL	3.3V	0V	–5V
-3.3V LVECL to 5V PECL	5V	0V	–3.3V
-3.3V LVECL to 3.3V LVPECL	3.3V	0V	–3.3V

PIN NAMES

Pin	Function
Dn	ECL/LVECL Inputs
Qn	PECL/LVPECL Outputs
VBB	ECL/LVECL Reference Voltage Output

PACKAGE/ORDERING INFORMATION

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100EL90VZC	Z20-1	Commercial	SY100EL90VZC	Sn-Pb
SY100EL90VZCTR ⁽²⁾	Z20-1	Commercial	SY100EL90VZC	Sn-Pb
SY100EL90VZI	Z20-1	Industrial	SY100EL90VZI	Sn-Pb
SY100EL90VZITR ⁽²⁾	Z20-1	Industrial	SY100EL90VZI	Sn-Pb
SY100EL90VZG ⁽³⁾	Z20-1	Industiral	SY100EL90VZG with Pb-Free bar-line indicator	NiPdAu Pb-Free
SY100EL90VZGTR ^(2, 3)	Z20-1	Industrial	SY100EL90VZG with Pb-Free bar-line indicator	NiPdAu Pb-Free

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals only.

2. Tape and Reel.

3. Pb-Free package is recommended for new designs.

20-Pin Wide SOIC (Z20-1)

ECL/LVECL INPUT DC ELECTRICAL CHARACTERISTICS

ECL: VEE = -4.2V to -5.5V; LVECL: VEE = -3.0V to -3.8V

		TA = −40°C			Т	TA = 0°C			TA = +25°C			TA = +85°C			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
Vін	Input HIGH Voltage	-1165		-880	-1165	_	-880	-1165	_	-880	-1165	_	-880	mV	
VIL	Input LOW Voltage	-1810	-	-1475	-1810	_	-1475	-1810	_	-1475	-1810	_	-1475	mV	
IEE	Power Supply Current	_		8		_	8	_	_	8	_	_	8	mA	
Іін	Input HIGH Current	_		150			150	_		150	_		150	μA	
lı∟	Input LOW Current Dn Dn	0.5 600			0.5 600			0.5 600			0.5 600			μA	
VBB	Output Reference	-1.38	_	-1.26	-1.38	—	-1.26	-1.38	_	-1.26	-1.38	_	-1.26	V	
Vpp	Minimum Peak-to-Peak Input	150	_		150			150			150		_	mV	

LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS

VCC = +3.0V to +3.8V

		TA = −40°C			$TA = 0^{\circ}C$			TA = +25°C			T/			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Vон	Output HIGH Voltage ⁽¹⁾	2.215		2.420	2.275	_	2.420	2.275	2.350	2.420	2.275	_	2.420	V
Vol	Output LOW Voltage ⁽¹⁾	1.470		1.745	1.490	_	1.680	1.490	1.600	1.680	1.490	_	1.680	V
lcc	Power Supply Current	_		24	_	_	24		20	24	—	_	26	mA

Note:

1. These levels are for VCC = 3.3V. Level specifications will vary 1:1 with VCC.

PECL OUTPUT DC ELECTRICAL CHARACTERISTICS

VCC = +4.2V to +5.5V

		TA = -40°C			$TA = 0^{\circ}C$			TA = +25°C			T/			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Vон	Output HIGH Voltage ⁽¹⁾	3.915		4.120	3.975		4.120	3.975	4.050	4.120	3.975		4.120	V
Vol	Output LOW Voltage ⁽¹⁾	3.170		3.445	3.190	_	3.380	3.190	3.300	3.380	3.190		3.380	V
Icc	Power Supply Current	_	_	24	_	_	24	_	20	24	_	_	26	mA

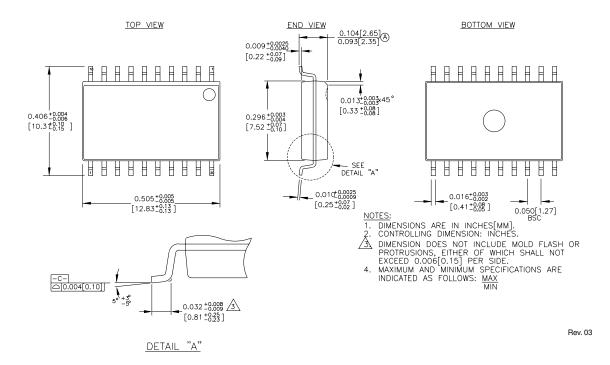
Note:

1. These values are for Vcc = 5V. Level specifications will vary 1:1 with Vcc.

AC ELECTRICAL CHARACTERISTICS

ECL: VEE = -4.2V to -5.5V; LVECL: VEE = -3.0V to -3.8V; PECL: VCC = +4.2V to +5.5V; LVPECL: VCC = +3.0V to +3.8V

		T/	TA = −40°C			$TA = 0^{\circ}C$			۱ = +25 °	°C	TA			
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
tPD	Propagation Delay Diff. D to Q S.E.	390 340	_	590 640	410 360	_	610 660	420 370	_	620 670	460 410	_	660 710	ps
tskew	Within-Device Skew ⁽¹⁾ Output-to-Output Part-to-Part (Diff.) Duty Cycle (Diff.)		20 — 25	100 200 —		20 — 25	100 200 —		20 — 25	100 200 —		20 — 25	100 200 —	ps
Vpp	Minimum Input Swing ⁽²⁾	150	—	_	150		—	150	_	—	150	_	—	mV
VCMR	Common Mode Range ⁽³⁾	-	_	-0.4	_	_	-0.4	_	_	-0.4	_	_	-0.4	V
tr tf	Output Rise/Fall Times Q (20% to 80%)	230		500	230	—	500	230		500	230	_	500	ps


Notes:

1. Skew is measured between outputs under identical transitions.

2. Minimum input swing for which AC parameters are guaranteed. The device will function reliably with differential inputs down to 100mV.

3. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPP min. and 1V. VCMR min. depends on VEE, VPP and temperature at VPP <500mV and −40°C, VCMR is VEE+1.3V; and for 0–85°C, VCMR is VEE+1.2V. At VPP ≥ 500mV and −40°C, VCMR is VEE+1.5V; and for 0–85°C, VCMR is VEE+1.4V.

20-PIN SOIC .300" WIDE (Z20-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.