: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

■ Max. shift frequency of 700 MHz
■ Clock to Q delay max. of 1100ps

- Sn to TC speed improved by 50%

■ Sn set-up and hold time reduced by more than 50%
■ Iee min. of -170 mA

- Industry standard 100 K ECL levels
- Internal $75 \mathrm{~K} \Omega$ input pull-down resistors

■ Extended supply voltage option:
VEE $=-4.2 \mathrm{~V}$ to -5.5 V

- Voltage and temperature compensation for improved noise immunity
- 50\% faster than Fairchild 300K at lower power
- Function and pinout compatible with Fairchild F100K
- Available in 24-pin CERPACK and 28-pin PLCC packages

PIN NAMES

Pin	Function
CP	Clock Pulse Input
CEP	Count Enable Parallel Input (Active LOW)
Do/CET	Serial Data Input/Count Enable Trickle Input (Active LOW)
So - S2	Select Inputs
MR	Master Reset Input
Vees	Vee Substrate
Vcca	Vcco for ECL Outputs
P0-P3	Preset Inputs
D3	Serial Data Input
TC	Terminal Count Output
Q0- Q3	Data Outputs
$\overline{\mathrm{Q}} 0-\overline{\mathrm{Q}} 3$	Complementary Data Outputs

DESCRIPTION

The SY100S336A is functionally the same as the SY100S336, but has Sn to TC speed and Sn set-up and hold times significantly improved, allowing for higher clock frequency when used as a cascaded multi-stage counter.

The SY100S336A functions either as a modulo-16 up/ down counter or as a 4-bit bidirectional shift register and is designed for use in high-performance ECL systems. Three Select inputs (Sn) are provided for determining the mode of operation. The Function Table lists the available modes of operation. In order to allow cascading for multistage counters, two Count Enable controls ($\overline{\mathrm{CEP}}, \overline{\mathrm{CET}})$ are provided. The $\overline{\mathrm{CET}}$ input also functions as the Serial Data input (So) for a shift-up operation, while the D3 input serves as the Serial Data input for the shift-down operation.

When the device is in the counting mode, the Terminal Count ($\overline{\mathrm{TC}}$) goes to a logical LOW when the count reaches 15 for count-up or reaches 0 for count-down. When in the shift mode, the $\overline{\mathrm{TC}}$ output simply repeats the Q3 output.

The flexiblity provided by the TC/Q3 output and the Do/ $\overline{\text { CET input allows these signals to be interconnected from }}$ one stage to the next higher stage for multistage counting or shift-up operations. The individual Presets (Pn) allow initialization of the counter by entering data in parallel to preset the counter. A logic HIGH on the Master Reset (MR) overrides all other inputs and asynchronously clears the flip-flops. An additional synchronous Clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops. All inputs have $75 \mathrm{~K} \Omega$ pulldown resistors.

PACKAGE/ORDERING INFORMATION

28-Pin PLCC (J28-1)

24-Pin Cerpack (F24-1)

Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY100S336AFC	F24-1	Commercial	SY100S336AFC	Sn-Pb
SY100S336AFCTR $^{(1)}$	F24-1	Commercial	SY100S336AFC	Sn-Pb
SY100S336AJC	J28-1	Commercial	SY100S336AJC	Sn-Pb
SY100S336AJCTR ${ }^{(1)}$	J28-1	Commercial	SY100S336AJC	Sn-Pb
SY100S336AJZ $^{(2)}$	J28-1	Commercial	SY100S336AJZ with Pb-Free bar-line indicator	Matte-Sn
SY100S336AJZTR $^{(1,2)}$	J28-1	Commercial	SY100S336AJZ with Pb-Free bar-line indicator	Matte-Sn

Notes:

1. Tape and Reel.
2. Pb -Free package is recommended for new designs.

BLOCK DIAGRAM

TRUTH TABLE ${ }^{(1)}$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Inputs} \& \multicolumn{6}{|c|}{Outputs}

\hline MR \& S2 \& S 1 \& So \& CEP \& Do/CET \& D3 \& CP \& Q0 \& Q1 \& Q2 \& Q3 \& TC \& Mode

\hline L \& L \& L \& L \& X \& X \& X \& u \& Po \& P1 \& P2 \& P3 \& L \& Preset (Parallel Load)

\hline L \& L \& L \& H \& X \& X \& X \& u \& Q0 \& Q1 \& Q2 \& Q3 \& L \& Invert

\hline L \& L \& H \& L \& X \& X \& X \& u \& Q1 \& Q2 \& Q3 \& D3 \& D3 \& Shift Left

\hline L \& L \& H \& H \& X \& X \& X \& u \& Do \& Q0 \& Q1 \& Q2 \& Q3* \& Shift Right

\hline L \& H \& L \& L \& L \& L \& X \& u \& \multicolumn{4}{|c|}{(Q0-3) minus 1} \& (1) \& Count Down

\hline L \& H
H \& L \& L
L \& H
X \& L
H \& X
X \& X
X \& $$
\begin{aligned}
& \text { Q0 } \\
& \text { Q0 }
\end{aligned}
$$ \& $$
\begin{aligned}
& \mathrm{Q}_{1} \\
& \mathrm{Q}_{1}
\end{aligned}
$$ \& Q2
Q2 \& Q3 \& (1)
H \& Count Down with $\overline{\mathrm{CEP}}$ Not Active Count Down with $\overline{\mathrm{CET}}$ Not Active

\hline L \& H \& L \& H \& X \& X \& X \& u \& L \& L \& L \& L \& H \& Clear

\hline L \& H \& H \& L \& L \& L \& X \& u \& \multicolumn{4}{|c|}{(Q0-3) plus 1} \& \# \& Count Up

\hline L \& H
H \& H
H \& L
L \& H
X \& L
H \& x

x \& X
x \& Q0
Q0 \& Q1
Q1 \& Q2
Q2 \& Q3
Q3 \& \neq
H \& Count Up with $\overline{\text { CEP }}$ Not Active Count Up with $\overline{\text { CET }}$ Not Active

\hline L \& H \& H \& H \& X \& X \& X \& X \& Q0 \& Q1 \& Q2 \& Q3 \& H \& Hold

\hline $$
\begin{aligned}
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$ \& L

L
L
L
H
H
H
H

H \& $$
\begin{aligned}
& \mathrm{L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$ \& L

H
L
H
L
L
H
L

H \& \[
$$
\begin{aligned}
& \mathrm{X} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X} \\
& \mathrm{X} \\
& \mathrm{X} \\
& \mathrm{~L} \\
& \mathrm{H} \\
& \mathrm{X} \\
& \mathrm{X} \\
& \mathrm{X} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{X} \\
& \hline
\end{aligned}
$$
\] \& L

L
L
L
L
L
L
L
L \& L
L
L
L
L
L
L
L
L \& L
L
L
L
L
L
L
L
L \& L
L
L
L
L
L
L
L
L \& L
L
L
L
L
H
H
H
H \& Asynchronous Master Reset

\hline
\end{tabular}

NOTE:

1. $\mathrm{H}=$ High Voltage Level

L = Low Voltage Level
X = Don't Care
$\mathrm{u}=$ LOW-to-HIGH Transition
(1) $=L$ if $Q_{0}-Q_{3}=L L L L$
H if $\mathrm{Q}_{0}-\mathrm{Q}_{3} \neq \mathrm{LLLL}$
$\neq=L$ if $Q_{0}-Q_{3}=H H H H$
H if $Q_{0}-Q_{3} \neq H H H H$

* Before the clock, $\overline{\mathrm{TC}}$ is Q_{3}; after the clock, $\overline{\mathrm{TC}}$ is Q 2

DC ELECTRICAL CHARACTERISTICS

VEE $=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=$ GND

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
IIH	Input HIGH Current, All Inputs	-	-	200	$\mu \mathrm{~A}$	$\mathrm{VIN}=$ VIH (Max.)
IEE	Power Supply Current	-170	-120	-60	mA	Inputs Open

AC ELECTRICAL CHARACTERISTICS

CERPACK

VEE $=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		$\mathrm{TA}=+25^{\circ} \mathrm{C}$		$\mathrm{TA}=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
fshift	Shift Frequency	700	-	700	-	700	-	MHz	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to Q_{n}, Q_{n}	450	1200	450	1200	450	1200	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to TC	600	1900	600	1900	600	1900	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Qn, Qn	500	1400	500	1400	500	1400	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to $\overline{T C}$	600	1900	600	1900	600	1900	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Do/CET to TC	400	1200	400	1200	400	1200	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Sn to TC	400	1500	400	1500	400	1500	ps	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	300	900	300	900	300	900	ps	
ts	Set-up Time D3 Pn Do/ $\overline{\mathrm{CET}}$ to $\overline{\mathrm{CEP}}$ Sn MR (Release Time)	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	- - -	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	- - -	ps	
tH	Hold Time D3 Pn Do/ $\overline{\mathrm{CET}}$ to $\overline{\mathrm{CEP}}$ Sn	$\begin{array}{r} 200 \\ 200 \\ 200 \\ -200 \end{array}$	-	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & -200 \end{aligned}$	-	$\begin{array}{r} 200 \\ 200 \\ 200 \\ -200 \end{array}$	-	ps	
tpw (H)	Pulse Width HIGH, CP, MR	-	800	-	800	-	800	ps	

AC ELECTRICAL CHARACTERISTICS

PLCC

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		$\mathrm{TA}=+2{ }^{\circ} \mathrm{C}$		TA $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
fshift	Shift Frequency	700	-	700	-	700	-	MHz	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to $\mathrm{Qn}, \overline{\mathrm{Q}} \mathrm{n}$	450	1100	450	1100	450	1100	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay CP to TC	600	1800	600	1800	600	1800	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Qn, \bar{Q}_{n}	500	1300	500	1300	500	1300	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to TC	600	1800	600	1800	600	1800	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Do/CET to TC	400	1100	400	1100	400	1100	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Sn to TC	400	1500	400	1500	400	1500	ps	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time300 20% to $80 \%, 80 \%$ to 20%	900	300	900	300	900	ps		
ts	Set-up Time D3 Pn Do/ $\overline{\mathrm{CET}}$ to $\overline{\mathrm{CEP}}$ Sn MR (Release Time)	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	- - -	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 800 \\ 800 \\ 700 \\ 1000 \\ 900 \end{gathered}$	- - -	ps	
tH	Hold Time D3 Pn Do/ $\overline{\text { CET }}$ to $\overline{\mathrm{CEP}}$ Sn	$\begin{gathered} 200 \\ 200 \\ 200 \\ -200 \end{gathered}$	- —	$\begin{gathered} 200 \\ 200 \\ 200 \\ -200 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 200 \\ 200 \\ 200 \\ -200 \end{gathered}$	- —	ps	
tpw (H)	Pulse Width HIGH, CP, MR	-	800	-	800	-	800	ps	

TIMING DIAGRAMS

Propagation Delay (Clock) and Transition Times

Propagation Delay (Reset)

TIMING DIAGRAMS

Propagation Delay (Serial Data, Selects)

Set-up and Hold Time

Notes:

1. V Ee $=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified, $\mathrm{VcC}=\mathrm{VCCA}=\mathrm{GND}$.
2. ts is the minimum time before the transition of the clock that information must be present at the data input.
3. $t \mathrm{t}$ is the minimum time after the transition of the clock that information must remain unchanged at the data input.

24-PIN CERPACK (F24-1)

NOTES:

1. DIMENSIONS ARE IN INCHES[MM]
2. THIS DIMENSION INCLUDES GLASS PROTRUSION AND CAP TO BASE ALIGNMENT TOLERANCES,
3. DIMENSIONS SHOWN ARE MAX/MIN

WHERE NOTED.

28-PIN PLCC (J28-1)

Rev. 03

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

