imall

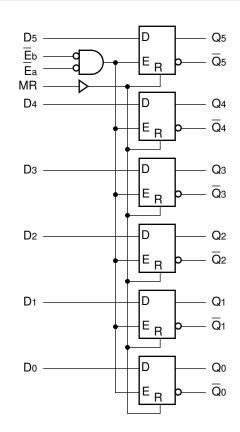
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

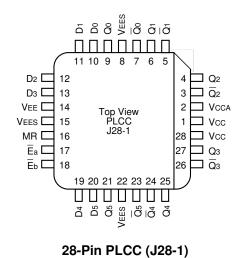
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China


FEATURES

- Max. transparent propagation delay of 900ps
- Min. Master Reset and Enable pulse widths of 100ps
- IEE min. of –98mA
- Industry standard 100K ECL levels
- Extended supply voltage option: VEE = -4.2V to -5.5V
- Voltage and temperature compensation for improved noise immunity
- Internal 75kΩ input pull-down resistors
- More than 40% faster than Fairchild
- Approximately 30% lower power than Fairchild
- Function and pinout compatible with Fairchild F100K
- Available in 28-pin PLCC package

DESCRIPTION

The SY100S350 offers six high-speed D-Latches with both true and complement outputs, and is performance compatible for use with high-performance ECL systems. When both enable signals ($\overline{E}a$ and $\overline{E}b$) are at a logic LOW, the latches are transparent and the input signals(Do-D5) appear at the outputs (Qo-Q5) after a propagation delay. If either or both of the enable signals are at a logic HIGH, then the latches store the last valid data present on its inputs before $\overline{E}a$ or $\overline{E}b$ went to a logic HIGH. The Master Reset (MR) overrides all other input signals and takes the outputs to a logic LOW state. All inputs have 75k Ω pull-down resistors.


BLOCK DIAGRAM

PIN NAMES

	•
Pin	Function
D0 — D5	Data Inputs
Ēa, Ēb	Common Enable Inputs (Active LOW)
MR	Asynchronous Master Reset Input
Q0 — Q5	Data Outputs
$\overline{Q}_0 \longrightarrow \overline{Q}_5$	Complementary Data Outputs
VEES	VEE Substrate
VCCA	Vcco for ECL Outputs

PACKAGE/ORDERING INFORMATION

Ordering Information

Part Number	Package Oper Type Ra		Package Marking	Lead Finish
SY100S350JC	J28-1	Commercial	SY100S350JC	Sn-Pb
SY100S350JCTR ⁽¹⁾	J28-1	Commercial	SY100S350JC	Sn-Pb
SY100S350JZ ⁽²⁾	J28-1	Commercial	SY100S350JZ with Pb-Free bar-line indicator	Matte-Sn
SY100S350JZTR ^(1, 2)	J28-1	Commercial	SY100S350JZ with Pb-Free bar-line indicator	Matte-Sn

Notes:

1. Tape and Reel.

2. Pb-Free package is recommended for new designs.

TRUTH TABLE⁽¹⁾

Each Latch

	Inp	uts	Outp			
Dn	Ēa	Ēb	MR	Qn Qn		Operating Mode
н	L	L	L	н	L	Latch
L	L	L	L	L	н	
Х	Х	н	L	Latched ⁽²⁾	Latched ⁽²⁾	
Х	Н	Х	L	Latched ⁽²⁾	Latched ⁽²⁾	
Х	Х	Х	Н	L	Н	Asynchronous

NOTES:

1. H = HIGH State

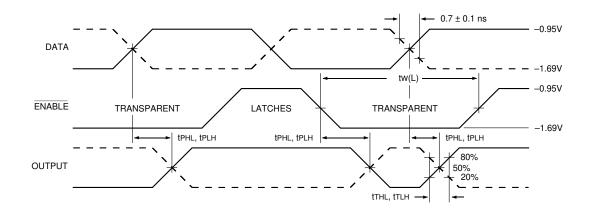
L = LOW State

X = Don't Care

2. Retains data that is present before \overline{E} positive transition.

DC ELECTRICAL CHARACTERISTICS

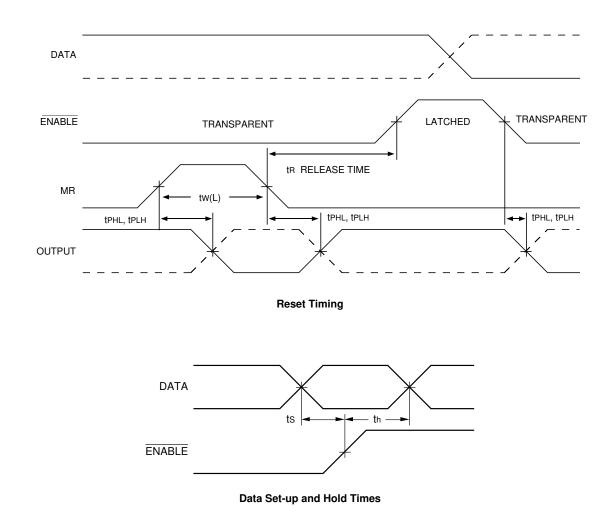
VEE = -4.2V to -5.5V unless otherwise specified; VCC = VCCA = GND


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Ін	Input HIGH Current				μA	VIN = VIH (Max.)
	MR	—	—	250		
	Dn	—	—	250		
	Ēa, Ēb	—	_	250		
IEE	Power Supply Current	-98	-78	-49	mA	Inputs Open

AC ELECTRICAL CHARACTERISTICS

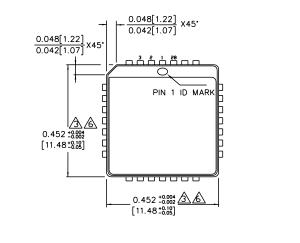
VEE = -4.2V to -5.5V unless otherwise specified; VCC = VCCA = GND

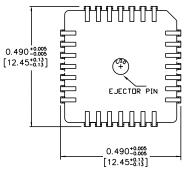
		TA = 0°C		TA = +25°C		TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
tPLH tPHL	Propagation Delay Dn to Output	300	900	300	900	300	900	ps	
tPLH tPHL	Propagation Delay Ea, Eb to Output	300	1000	300	1000	300	1000	ps	
tPLH tPHL	Propagation Delay MR to Output	300	1200	300	1200	300	1200	ps	
ttlн tthl	Transition Time 20% to 80%, 80% to 20%	300	900	300	900	300	900	ps	
ts	Set-up Time, Dn to En	500	_	500	—	500	_	ps	
tн	Hold Time, Dn to En	500	_	500	—	500	_	ps	
tr	Release Time, MR to En	1000	_	1000	_	1000	_	ps	
tpw (L)	Pulse Width, Ea, Eb	1000	_	1000	_	1000	_	ps	
tpw (H)	Pulse Width, MR	1000	_	1000	—	1000	_	ps	


TIMING DIAGRAMS

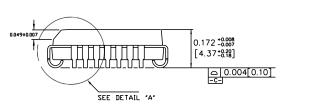
Note:

Enable Timing


 VEE = -4.2V to -5.5V unless otherwise specified; VCC = VCCA = GND


Notes:

ts is the minimum time before the transition of the clock that information must be present at the data input. tH is the minimum time after the transition of the clock that information must remain unchanged at the data input.


28-PIN PLCC (J28-1)

TOP VIEW

BOTTOM VIEW

SIDE VIEW

NOTES:

- JTES:

 DIMENSIONS ARE IN INCHES [MM].

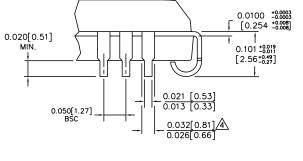
 CONTROLLING DIMENSION: INCHES.

 DIMENSION DOES NOT INCLUDE MOLD FLASH

 OR PROTRUSIONS, EITHER OF WHICH SHALL NOT

 EXCEED 0.008 [0.203].

 LEAD DIMENSION DOES NOT INCLUDE DAMBAR


 PROTRUSION.

 MAXIMUM AND MINIMUM SPECIFICATIONS ARE

 INDICATED AS FOLLOWS: MAX/MIN

 PACKAGE TOP DIMENSION MAY BE SUICHTLY

 A
- <u>A</u>
- 5.
- ◬ PACKAGE TOP DIMENSION MAY BE SLIGHTLY SMALLER THAN BOTTOM DIMENSION.

DETAIL "A"

Rev. A

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.