: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

■ Max. toggle frequency of 700 MHz
■ Clock to Q max. of 1200ps

- Iee min. of -98mA

■ Industry standard 100K ECL levels
■ Extended supply voltage option:
VEE $=-4.2 \mathrm{~V}$ to -5.5 V

- Voltage and temperature compensation for improved noise immunity
- Internal $75 \mathrm{~K} \Omega$ input pull-down resistors

■ 50\% faster than Fairchild 300K
■ Better than 20\% lower power than Fairchild

- Function and pinout compatible with Fairchild F100K

■ Available in 24-pin CERPACK and 28-pin PLCC packages

BLOCK DIAGRAM

DESCRIPTION

The SY100S351 offers six D-type, edge-triggered, master/slave flip-flops with differential outputs, and is designed for use in high-performance ECL systems. The flip-flops are controlled by the signal from the logical OR operation on a pair of common clock signals ($\mathrm{CPa}, \mathrm{CPb}$). Data enters the master when both CPa and CPb are LOW and transfers to the slave when either CPa or CPb (or both) go to a logic HIGH. The Master Reset (MR) input overrides all other inputs and takes the Q outputs to a logic LOW. The inputs on this device have $75 \mathrm{~K} \Omega$ pull-down resistors.

PIN CONFIGURATIONS

PIN NAMES

Pin	Function
$\mathrm{D} 0-\mathrm{D} 5$	Data Inputs
$\mathrm{CPa}, \mathrm{CPb}$	Common Clock Inputs
MR	Asynchronous Master Reset Input
$\mathrm{Q} 0-\mathrm{Q} 5$	Data Outputs
$\overline{\mathrm{Q}} 0-\overline{\mathrm{Q}} 5$	Complementary Data Outputs
Vees	Vee Substrate
Vcca	Vcco for ECL Outputs

TRUTH TABLES

Asynchronous Operation ${ }^{(1)}$				
Inputs				
Dn	CPa	$\mathbf{C P b}$	MR	Outputs $(\mathbf{t}+1)$
X	X	X	H	L

NOTE:

1. H = High Voltage Level

L = Low Voltage Level
X = Don't Care
$t=$ Time before CP Positive Transition $\mathrm{t}+1=$ Time after CP Positive Transition
u = LOW-to-HIGH Transition

Synchronous Operation ${ }^{(1)}$				
Inputs				
Dn	CPa	CPb	MR	Qn (t+1)
L	u	L	L	L
H	u	L	L	H
L	L	u	L	L
H	L	u	L	H
X	H	u	L	$\mathrm{Qn}(\mathrm{t})$
X	u	H	L	$\mathrm{Qn}(\mathrm{t})$
X	L	L	L	$\mathrm{Qn}(\mathrm{t})$

DC ELECTRICAL CHARACTERISTICS

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
IIH	Input HIGH Current				$\mu \mathrm{A}$	VIN = VIH (Max.)
	MR	-	-	270		
	Do-D5	-	-	200		
CPa, CPb	-	-	300		mA	Inputs Open

AC ELECTRICAL CHARACTERISTICS

CERPACK

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		TA $=+25^{\circ} \mathrm{C}$		TA $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
fmax	Toggle Frequency	700	-	700	-	700	-	MHz	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{CPa}, \mathrm{CPb}$ to Output	-	1200	-	1200	-	1200	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Output	-	1200	-	1200	-	1200	ps	
$\begin{aligned} & \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	300	900	300	900	300	900	ps	
ts	Set-up Time Do-D5 MR (Release Time)	$\begin{gathered} 500 \\ 1000 \end{gathered}$	-	$\begin{gathered} 500 \\ 1000 \end{gathered}$	-	$\begin{gathered} 500 \\ 1000 \end{gathered}$	-	ps	
th	Hold Time, Do-D5	550	-	550	-	550	-	ps	
tPW (H)	Pulse Width HIGH $\mathrm{CPa}, \mathrm{CPb}, \mathrm{MR}$	1000	-	1000	-	1000	-	ps	

PLCC

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{TA}=0^{\circ} \mathrm{C}$		TA $=+25^{\circ} \mathrm{C}$		TA $=+85^{\circ} \mathrm{C}$		Unit	Condition
		Min.	Max.	Min.	Max.	Min.	Max.		
fmax	Toggle Frequency	700	-	700	-	700	-	MHz	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay $\mathrm{CPa}, \mathrm{CPb}$ to Output	-	1200	-	1200	-	1200	ps	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay MR to Output	-	1200	-	1200	-	1200	ps	
$\begin{aligned} & \hline \text { tTLH } \\ & \text { tTHL } \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	300	900	300	900	300	900	ps	
ts	Set-up Time Do-D5 MR (Release Time)	$\begin{gathered} 500 \\ 1000 \end{gathered}$	-	$\begin{gathered} 500 \\ 1000 \end{gathered}$	-	$\begin{gathered} 500 \\ 1000 \end{gathered}$	-	ps	
th	Hold Time, D0-D5	550	-	550	-	550	-	ps	
tPW (H)	Pulse Width HIGH CPa, CPb, MR	1000	-	1000	-	1000	-	ps	

TIMING DIAGRAMS

Propagation Delay (Clock) and Transition Times

NOTE:

$\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{Vcc}=\mathrm{VccA}=\mathrm{GND}$

Propagation Delay (Resets)

TIMING DIAGRAMS

Data Set-up and Hold Time

NOTES:

1. $\mathrm{VEE}=-4.2 \mathrm{~V}$ to -5.5 V unless otherwise specified; $\mathrm{VCC}=\mathrm{VCCA}=\mathrm{GND}$
2. ts is the minimum time before the transition of the clock that information must be present at the data input.
3. th is the minimum time after the transition of the clock that information must remain unchanged at the data input.

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range
SY100S351FC	F24-1	Commercial
SY100S351JC	J28-1	Commercial
SY100S351JCTR	J28-1	Commercial

24 LEAD CERPACK (F24-1)

NOTES:

1. DIMENSIONS ARE IN INCHES[MM]
2. THIS DIMENSION INCLUDES GLASS PROTRUSION AND CAP TO BASE ALIGNMENT TOLERANCES.
3. DIMENSIONS SHOWN ARE MAX/MIN,

WHERE NOTED.

28 LEAD PLCC (J28-1)

Rev. 03

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

