

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

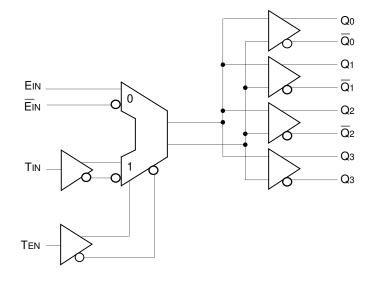
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China










# SINGLE SUPPLY QUAD PECL/TTL-TO-PECL

Precision Edge<sup>®</sup> SY100S815

## **FEATURES**

- Quad PECL version of popular ECLinPS E111
- **■** Low skew
- Guaranteed skew spec
- **TTL enable input**
- Selectable TTL or PECL clock input
- Single +5V supply
- **■** Differential internal design
- PECL I/O fully compatible with industry standard
- Internal 75k $\Omega$  PECL input pull-down resistors
- Available in 16-pin SOIC package

## **BLOCK DIAGRAM**



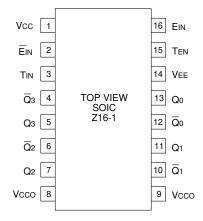


Precision Edge<sup>®</sup>

### DESCRIPTION

The SY100S815 is a low skew 1-to-4 PECL differential driver designed for clock distribution in new, high-performance PECL systems. It accepts either a PECL clock input or a TTL input by using the TTL enable pin TEN. When the TTL enable pin is HIGH, the TTL input is enabled and the PECL input is disabled. When the enable pin is set LOW, the TTL input is disabled and the PECL input is enabled.

The device is specifically designed and produced for low skew. The interconnect scheme and metal layout are carefully optimized for minimal gate-to-gate skew within the device. Wafer characterization and process control ensure consistent distribution of propagation delay from lot to lot. Since the S815 shares a common set of "basic" processing with the other members of the ECLinPS family, wafer characterization at the point of device personalization allows for tighter control of parameters, including propagation delay.


To ensure that the skew specification is met, it is necessary that both sides of the differential output are terminated into  $50\Omega$ , even if only one side is being used. In most applications, all nine differential pairs will be used and, therefore, terminated. In the case where fewer than nine pairs are used, it is necessary to terminate at least the output pairs on the same package side (i.e. sharing the same VCCO as the pair(s) being used on that side) in order to maintain minimum skew.

#### PIN NAMES

| Pin                                         | Function                     |
|---------------------------------------------|------------------------------|
| EIN, ĒIN                                    | Differential PECL Input Pair |
| Tin                                         | TTL Input                    |
| TEN                                         | TTL Input Enable             |
| $Q_0, \overline{Q}_0 - Q_3, \overline{Q}_3$ | Differential PECL Outputs    |
| Vcc                                         | PECL Vcc (+5.0V)             |
| VEE                                         | PECL Ground (0V)             |

Precision Edge is a registered trademark of Micrel, Inc.

# PACKAGE/ORDERING INFORMATION



16-Pin SOIC (Z16-1)

# **Ordering Information**

| Part Number                     | Package<br>Type | Operating<br>Range | Package<br>Marking                             | Lead<br>Finish    |
|---------------------------------|-----------------|--------------------|------------------------------------------------|-------------------|
| SY100S815ZC                     | Z16-1           | Commercial         | SY100S815ZC                                    | Sn-Pb             |
| SY100S815ZCTR <sup>(1)</sup>    | Z16-1           | Commercial         | SY100S815ZC                                    | Sn-Pb             |
| SY100S815ZG <sup>(2)</sup>      | Z16-1           | Industrial         | SY100S815ZG with<br>Pb-Free bar-line indicator | NiPdAu<br>Pb-Free |
| SY100S815ZGTR <sup>(1, 2)</sup> | Z16-1           | Industrial         | SY100S815ZG with<br>Pb-Free bar-line indicator | NiPdAu<br>Pb-Free |

## Notes:

- 1. Tape and Reel.
- 2. Pb-Free package is recommended for new designs.

## **TRUTH TABLE**

| TEN | Ein | Tin | Q |
|-----|-----|-----|---|
| L   | L   | Х   | L |
| L   | Н   | Х   | Н |
| Н   | X   | L   | L |
| Н   | Х   | Н   | Н |

# PECL DC ELECTRICAL CHARACTERISTICS

 $VCC = VCCO = +5.0V \pm 5\%$ 

|        |                                        |           | Ta = 0°C  |           | 7         | ΓA = +25°C | ;         | TA = +85°C |           |           |      |
|--------|----------------------------------------|-----------|-----------|-----------|-----------|------------|-----------|------------|-----------|-----------|------|
| Symbol | Parameter                              | Min.      | Тур.      | Max.      | Min.      | Тур.       | Max.      | Min.       | Тур.      | Max.      | Unit |
| Іін    | Input HIGH Current                     | _         |           | 150       | _         | _          | 150       | _          | _         | 150       | μΑ   |
| lıL    | Input LOW Current                      | 0.5       |           |           | 0.5       | _          | _         | 0.5        | _         | _         | μΑ   |
| VIH    | Input HIGH Voltage <sup>(1)</sup>      | 3.835     | _         | 4.120     | 3.835     | _          | 4.120     | 3.835      | _         | 4.120     | ٧    |
| VIL    | Input LOW Voltage(1)                   | 3.190     | _         | 3.525     | 3.190     | _          | 3.525     | 3.190      | _         | 3.525     | ٧    |
| Vон    | Output HIGH Voltage <sup>(2)</sup>     | Vcc -1025 | Vcc -955  | Vcc -870  | Vcc -1025 | Vcc -955   | Vcc -870  | Vcc –1025  | Vcc -955  | Vcc –870  | mV   |
| Vol    | Output LOW Voltage <sup>(2)</sup>      | Vcc -1890 | Vcc -1705 | Vcc -1620 | Vcc -1890 | Vcc –1705  | Vcc -1620 | Vcc –1890  | Vcc –1705 | Vcc –1620 | mV   |
| Icc    | Power Supply <sup>(3)</sup><br>Current | _         | 53        | 65        | _         | 53         | 65        | _          | 60        | 74        | mA   |

## Notes:

- 1. VCC = VCCO = 5.0V
- 2. VIN = VIH (Max.) or VIL (Min.) Loading with  $50\Omega$  to Vcc -2V.
- 3. All inputs and outputs open.

## TTL DC ELECTRICAL CHARACTERISTICS

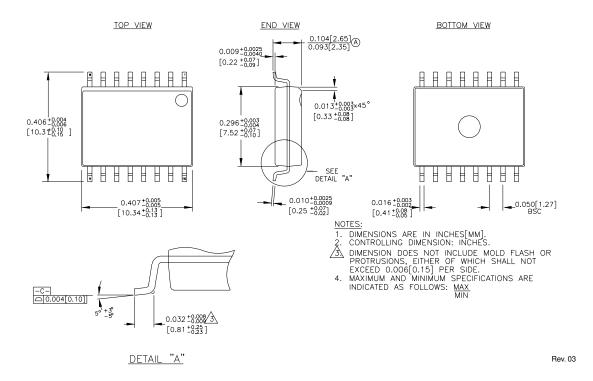
 $VCC = VCCO = +5.0V \pm 5\%$ 

|        |                                      | TA = 0°C |      |           | TA = +25°C |      |           | TA = +85°C |      |           |      |           |
|--------|--------------------------------------|----------|------|-----------|------------|------|-----------|------------|------|-----------|------|-----------|
| Symbol | Parameter                            | Min.     | Тур. | Max.      | Min.       | Тур. | Max.      | Min.       | Тур. | Max.      | Unit | Condition |
| VIH    | Input HIGH Voltage                   | 2.0      | _    | _         | 2.0        | _    | _         | 2.0        | _    | _         | ٧    |           |
| VIL    | Input LOW Voltage                    | _        | _    | 0.8       | _          | _    | 0.8       | _          | _    | 0.8       | ٧    |           |
| IIН    | Input HIGH Current <sup>(1, 2)</sup> | _        | _    | 20<br>100 | _          | _    | 20<br>100 | _<br>_     | _    | 20<br>100 | μА   |           |
| lıL    | Input LOW Current <sup>(3)</sup>     |          | _    | -0.6      | _          | _    | -0.6      | _          | _    | -0.6      | mA   |           |
| Vıĸ    | Input Clamp Voltage <sup>(4)</sup>   | _        | _    | -1.2      | _          | _    | -1.2      | _          | _    | -1.2      | ٧    |           |

#### Notes:

- 1. VIN=2.7V
- 2. VIN=5.0V
- 3. VIN=0.5V
- 4. IIN=-18mA

# AC ELECTRICAL CHARACTERISTICS(1-6)


 $VCC = VCCO = +5.0V \pm 5\%$ 

|              |                                                                                                                             | TA = 0°C          |             |                   | T                 | 「A = +25° | С                 | Т                 |      |                   |      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-------------------|-------------------|-----------|-------------------|-------------------|------|-------------------|------|
| Symbol       | Parameter                                                                                                                   | Min.              | Тур.        | Max.              | Min.              | Тур.      | Max.              | Min.              | Тур. | Max.              | Unit |
| tPLH<br>tPHL | Propagation Delay to Output <sup>(1)</sup><br>EIN (differential) <sup>(2)</sup><br>EIN (single-ended) <sup>(3)</sup><br>TIN | 430<br>330<br>350 | _<br>_<br>_ | 630<br>730<br>950 | 430<br>330<br>350 |           | 630<br>730<br>950 | 430<br>330<br>350 |      | 630<br>730<br>950 | ps   |
| tskew        | Within-Device skew <sup>(4)</sup>                                                                                           | _                 | 25          | 50                | _                 | 25        | 50                | _                 | 25   | 50                | ps   |
| VPP          | Minimum PECL <sup>(5)</sup><br>Input Swing                                                                                  | 250               | _           | _                 | 250               | _         | _                 | 250               | _    | _                 | mV   |
| VCMR         | PECL Common <sup>(6)</sup><br>Mode Range                                                                                    | -1.6              | _           | -0.4              | -1.6              | _         | -0.4              | -1.6              | _    | -0.4              | V    |
| tr<br>tf     | Output Rise/Fall Times<br>20% to 80%                                                                                        | 275               | 375         | 600               | 275               | 375       | 600               | 275               | 375  | 600               | ps   |

#### Notes:

- 1. Part-to-part skew is defined as  ${\sf Max.-Min.}$  value at the given temperature.
- 2. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.
- 3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.
- 4. The within-device skew is defined as the worst case difference between any two similar delay paths within a single device.
- 5. VPP (min.) is defined as the minimum input differential voltage which will cause no increase in the propagation delay. The VPP (min.) is AC limited for the S815, as a differential input as low as 50mV will still produce full PECL levels at the output.
- 6. VCMR is defined as the range within which the VIH level may vary, with the device still meeting the propagation delay specification. The VIL level must be such that the peak-to-peak voltage is less than 1.0V and greater than or equal to VPP (min.).

## 16-PIN SOIC .300" WIDE (Z16-1)



## MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.