imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

USB 2.0 + Audio Switch

The NL3S22S is a double-pole/double-throw (DPDT) analog switch for routing high speed differential data and audio. The high-speed data path is compliant with High Speed USB 2.0, Full Speed USB 1.1, Low Speed USB 1.0 and any generic UART protocol. The multi-purpose audio path is capable of passing signals with negative voltages as low as 2 V below ground and features shunt resistors to reduce Pop and Click noise in the audio system.

Features

- V_{CC} Range: 2.7 V to 5.5 V
- Control Pins Compatible with 1.8 V Interfaces
- I_{CC}: 23 µA (Typ)
- ESD Performance: 4 kV HBM
- Available in1.4 mm x 1.8 mm UQFN10
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

High Speed Data Path

- Input Signal Range: 0 V to 3.7 V
- R_{DS(on)}: 5 Ω (Typ)
- C_{ON}: 4.5 pF (Typ)
- Data Rate: USB 2.0-Compliant up to 480 Mbps

Audio Path

- Input Signal Range: -2.0 V to 2.0 V
- R_{DSON}: 3 Ω (Typ)
- R_{ON(FLAT)}: 0.002 Ω (Typ)
- THD: 0.002% (R_L = 16 Ω / V_{IS} = 0.4 V_{RMS})

Applications

- Smartphones
- Tablets
- USB 2.0 Hosts/Peripherals
- Audio / High-Speeds Data Switching

ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

AW = Device Code M = Date Code

= Pb-Free Device

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NL3S22SMUTAG	UQFN10 (Pb-Free)	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1

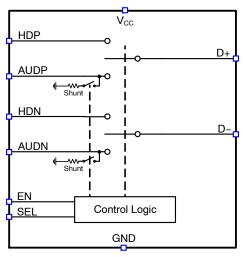


Figure 1. Block Diagram

FUNCTION TABLE

EN	SEL	Shunt Status	D+/D- Function
0	Х	ON	No Connect
1	0	OFF	AUDP/AUDN
1	1	ON	HDP/HDN

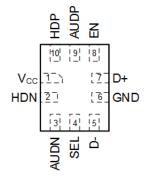


Figure 2. UQFN10 – Top Through View

PIN DESCRIPTION

Pin Name	Pin	Description
V _{CC}	1	Power Supply
HDN	2	High Speed Differential Data (-)
AUDN	3	Audio Signal (-)
SEL	4	Function Select
D-	5	Audio/Data Common I/O (-)
GND	6	Ground
D+	7	Audio/Data Common I/O (+)
EN	8	Chip Enable
AUDP	9	Audio Signal (+)
HDP	10	High Speed Differential Data (+)

MAXIMUM RATINGS

Rating	Symbol		Value	Unit	
V _{CC}	Positive DC Supply Voltage		–0.3 to +6	V	
V _{IS}	Analog Input/Output Voltage	HDP, HDN	-0.3 to +5.5	V	
		AUDP, AUDN	-2.5 to V _{CC} + 0.3		
		D+, D-	-2.5 to +5.5		
V _{IN}	Digital Control Pin Voltage on EN, SEL		–0.3 to V _{CC} + 0.3	V	
Ts	Storage Temperature		–55 to +150	°C	
ΤL	Lead Temperature, 1 mm from Case for	10 seconds	260	°C	
TJ	Junction Temperature Under Bias		150	°C	
MSL	Moisture Sensitivity (Note 1)		Level 1		
I _{LU}	Latchup Current (Note 2)		±100	mA	
ESD	ESD Protection (Note 3)	Human Body Model	4000	V	

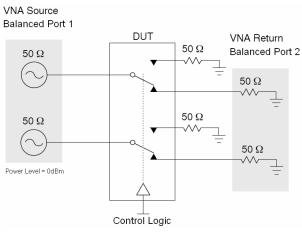
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: J–STD–020A.
Latch up Current Maximum Rating: ±100 mA per JEDEC standard: JESD78.
This device series contains ESD protection and passes the following tests: Human Body Model (HBM) ±4.0 kV per JEDEC standard: JESD22–A114 for all pins.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CCEN}	Positive DC Supply Voltage		2.7	5.5	V
V _{IS}	Switch Input / Output Voltage (Note 4)	HDP, HDN	0	3.7	V
		AUDP, AUDN	-2.0	2.0	
		D+, D-	-2.0	3.7	
V _{IN}	Digital Control Input Voltage		GND	V _{CC}	V
T _A	Operating Temperature Range		-40	+85	°C

4. f the audio channel is not in use, it is recommended that no signals are applied on the audio inputs AUDN and AUDP.


DC ELECTRICAL CHARACTERISTICS (Typical values are at V_{CC} = +3.6 V and T_A = +25 °C)

				–40 °C to 85 °C			
Symbol Parameter		Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
POWER SU	PPLY						
I _{CC}	Supply Current	I _{IS} = 0 mA	4.2	-	23	105	μA
Control Log	gic (EN, SEL)						
VIH	Input High Voltage		4.2	1.5	-	-	V
			3.6	1.4	-	-	
			2.7	1.3	-	-	
VIL	Input Low Voltage		4.2	-	-	0.4	V
			3.6	-	-	0.4	
			2.7	-	-	0.4	
V _{IHYS}	Input Hysteresis		2.7 – 5.5	-	250	-	mV
I _{IN}	Leakage Current		2.7 – 5.5	-	-	±150	nA
AUDIO SWI	TCH (AUDP/AUDN ↔ D+/D–)						
R _{ON}	ON-Resistance	V_{IS} = -2.0 V to 2.0 V, I_{IS} = 50 mA	3.0	-	3	5	Ω
ΔR_{ON}	ON-Resistance Matching Between Channels	V_{IS} = -2.0 V to 2.0 V, I_{IS} = 50 mA	3.0	_	0.05	-	Ω
R _{FLAT(ON)}	ON Resistance Flatness	V_{IS} = -2.0 V to 2.0 V, I_{IS} = 50 mA	3.0	-	0.002	-	Ω
R _{SH}	Shunt Resistance		3.6	-	125	200	Ω
DATA SWIT	CH (HDP/HDN ↔ D+/D–)						-
R _{ON}	ON-Resistance	V_{IS} = 0 V to 1.7 V, I_{IS} = 15 mA	3.0	-	5	7.5	Ω
ΔR_{ON}	ON-Resistance Matching Between Channels	V_{IS} = 0 V to 1.7 V, I_{IS} = 15 mA	3.0	-	0.02	_	Ω
R _{FLAT(ON)}	ON Resistance Flatness	V_{IS} = 0 V to 1.7 V, I_{IS} = 15 mA	3.0	-	0.003	-	Ω
I _{SW(OFF)}	OFF-State Leakage	V _{IS} = 0 V to 3.6	3.6	-	-	200	nA
I _{SW(ON)}	ON-State Leakage	V _{IS} = 0 V to 3.6	3.6	_	_	±200	nA

				–40 °C to 85 °C		°C	
Symbol	Parameter	Test Conditions	V _{CC} (V)	Min	Тур	Max	Unit
AUDIO SW	ITCH (AUDP/AUDN ↔ D+/D-)				-	
THD	Audio THD	f = 20 Hz to 20 kHz, V_{IS} = 0.4 $V_{RMS},$ DC Bias = 0 V, R_L = 16 Ω	2.7 – 5.5	-	0.002	-	%
PSRR	Power Supply Ripple Rejection	From V _{CC} unto AUDP/AUDN, f = 217 Hz, R _L = 16 Ω	2.7 – 5.5	-	118	-	dB
DATA SWI	ſCH (HDP/HDN ↔ D+/D–)						
C _{ON}	Equivalent ON-Capacitance	Switch ON, f = 1 MHz	3.6	-	4.84	-	pF
C _{OFF}	Equivalent OFF-Capacitance	Switch OFF, f = 1 MHz	3.6	-	2.06	-	pF
D _{IL}	Differential Insertion	f = 10 MHz	2.7 – 5.5	-	-0.42	-	dB
	Loss	f = 800 MHz	2.7 – 5.5	-	-1.89	-	
		f = 1.1 GHz	2.7 – 5.5	-	-3.01	_	
D _{ISO}	Differential Off-Isolation	f = 10 MHz	2.7 – 5.5	-	-60	-	dB
		f = 800 MHz	2.7 – 5.5	-	-15	_	
		f = 1.1 GHz	2.7 – 5.5	-	-15	_	
D _{CTK}	Differential Crosstalk	f = 10 MHz	2.7 – 5.5	-	-67	_	dB
		f = 800 MHz	2.7 – 5.5	-	-23	_	
		f = 1.1 GHz	2.7 – 5.5	-	-19	_	
PSRR	Power Supply Ripple Rejection	From V _{CC} unto D+/D-, f = 217 Hz, R _L = 50 Ω	2.7 – 5.5	-	108	-	dB
DYNAMIC .	TIMING						
t _{PD}	Propagation Delay (Notes 5 and 6)	V_{NOn} or V_{NCn} = 0V, R_L = 50 Ω ,	2.7 – 5.5	-	0.25	-	ns
t _{ON}	Turn–On Time	V_{IS} = 1 V, R_L = 50 Ω , C_L = 7 pF (fixture only)	2.7 – 5.5				μs
		EN or SEL to AUDP/AUDN		-	2.2	_	
		EN or SEL to HDP/HDN		-	6.2	_	
t _{OFF}	Turn-Off Time	V_{IS} = 1 V, R_L = 50 Ω,C_L = 7 pF (fixture only)	2.7 – 5.5				ns
		EN or SEL to AUDP/AUDN		-	67	-	
		EN or SEL to HDP/HDN		-	1200	-	
t _{sk(b-b)}	Bit to bit skew	Within the same differential channel	2.7 – 5.5	_	5	-	ps
t _{sk(ch-ch)}	Channel to channel skew	Maximum skew between all chan- nels	2.7 – 5.5	-	5	-	ps

Guaranteed by design.
No other delays than the RC network formed by the load resistance and the load capacitance of the switch are added on the bus. For a 10 pF load, this delay is 5 ns which is much smaller than rise and fall time of typical driving systems. Propagation delays on the bus are determined by the driving circuit on the driving side and its interactions with the load of the driven side.

PARAMETER MEASUREMENT INFORMATION

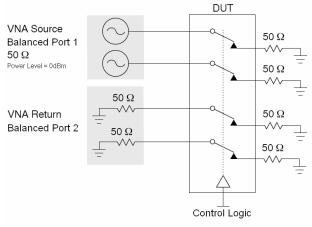
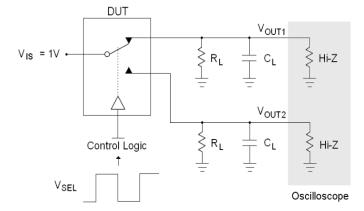
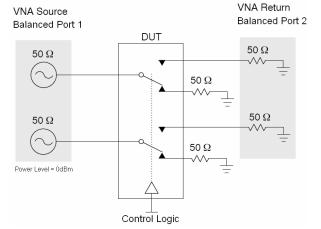
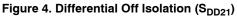
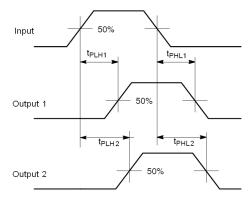
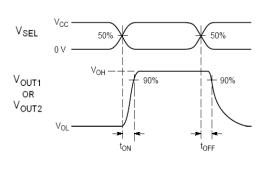






Figure 5. Differential Crosstalk (S_{DD21})



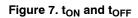


Figure 9. On State Leakage

TYPICAL OPERATING CHARACTERISTICS

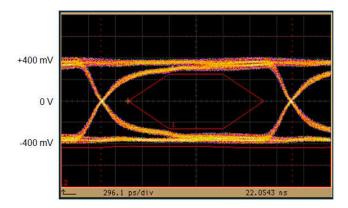


Figure 10. USB 2.0 High Speed Eye Diagram

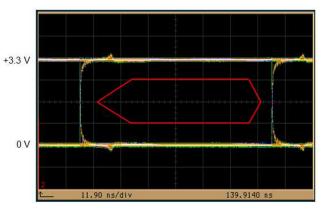


Figure 11. USB 1.1 Full Speed Eye Diagram

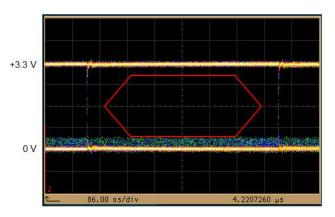


Figure 12. USB 1.0 Low Speed Eye Diagram

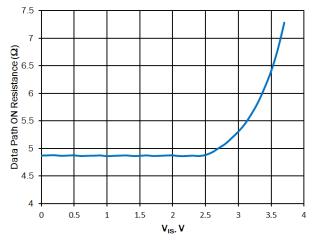


Figure 14. Data Path On Resistance

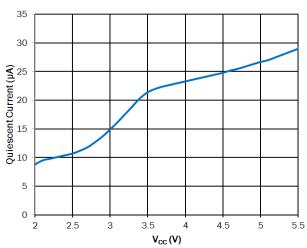
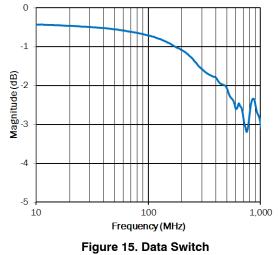



Figure 13. Product Supply Current

Differential Insertion Loss

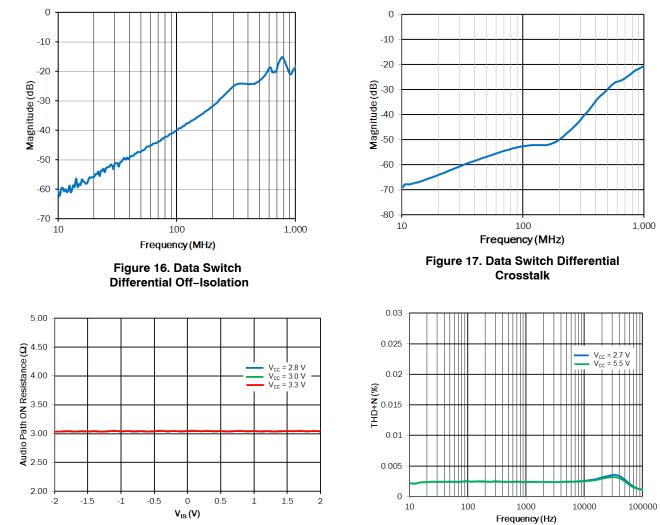
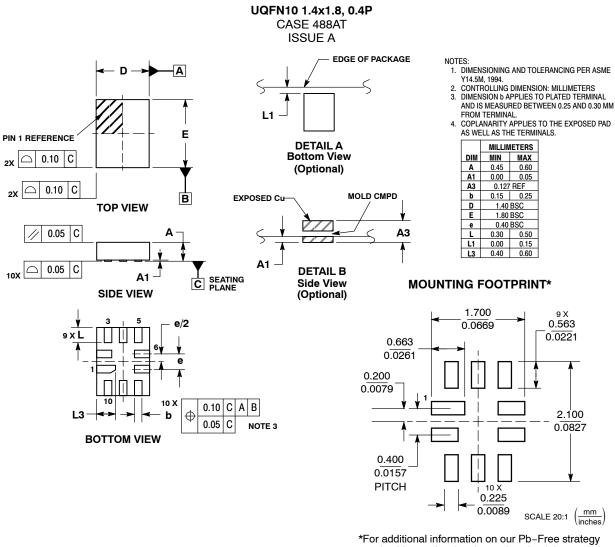



Figure 19. Audio THD

Figure 18. Audio Path On Resistance

PACKAGE DIMENSIONS

and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardles, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative