

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

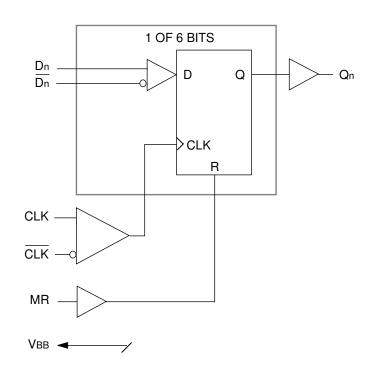
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

REGISTERED HEX PECL-TO-TTL

SY10H607 SY100H607

FEATURES

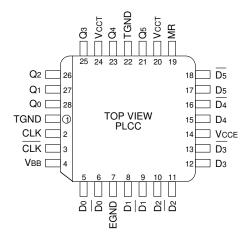
- Differential PECL data and clock inputs
- 48mA sink, 15mA source TTL outputs
- Single +5V power supply
- Multiple power and ground pins to minimize noise
- Specified within-device skew
- VBB output for single-ended use
- Fully compatible with MC10H/100H607
- Available in 28-pin PLCC package


DESCRIPTION

The SY10/100H607 are 6-bit, registered, dual supply PECL-to-TTL translators. The devices feature differential PECL inputs for both data and clock. The TTL outputs feature 48mA sink, 15mA source drive capability for driving high fanout loads. The asynchronous master reset control is a PECL level input.

With its differential PECL inputs and TTL outputs, the H607 device is ideally suited for the receive function of a HPPI bus-type board-to-board interface application. The on-chip registers simplify the task of synchronizing the data between the two boards.

The device is available in either ECL standard: the 10H device is compatible with 10K logic levels, while the 100H device is compatible with 100K logic levels.


BLOCK DIAGRAM

PIN NAMES

Pin	Function
D0 - D5	True PECL Data Inputs
<u>D0</u> – <u>D5</u>	Inverted PECL Data Inputs
CLK, CLK	Differential PECL Clock Input
MR	PECL Master Reset Input
Q0 — Q5	TTL Outputs
VCCE	PECL Vcc (5.0V)
Vсст	TTL Vcc (5.0V)
TGND	TTL Ground
EGND	PECL Ground
VBB	Vвв Reference Output (PECL)

PACKAGE/ORDERING INFORMATION

28-Pin PLCC (J28-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10H607JC	J28-1	Commercial	SY10H607JC	Sn-Pb
SY10H607JCTR ⁽²⁾	J28-1	Commercial	SY10H607JC	Sn-Pb
SY100H607JC	J28-1	Commercial	SY100H607JC	Sn-Pb
SY100H607JCTR ⁽²⁾	J28-1	Commercial	SY100H607JC	Sn-Pb
SY10H607JZ ⁽³⁾	J28-1	Commercial	SY10H607JZ with Pb-Free bar-line indicator	Matte-Sn
SY10H607JZTR ^(2, 3)	J28-1	Commercial	SY10H607JZ with Pb-Free bar-line indicator	Matte-Sn
SY100H607JZ ⁽³⁾	J28-1	Commercial	SY100H607JZ with Pb-Free bar-line indicator	Matte-Sn
SY100H607JZTR ^(2, 3)	J28-1	Commercial	SY100H607JZ with Pb-Free bar-line indicator	Matte-Sn

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

TRUTH TABLE

Dn	MR	TCLK/CLK	Qn + 1		
L	L	Z	L		
Н	L	Z	Н		
Х	Н	Х	L		

Z = Low to High Transition.

DC ELECTRICAL CHARACTERISTICS

 $VCCT = VCCE = 5.0V \pm 5\%$

		Ta= 0°C			TA= +25°C			Ta= + 85°C				
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
lee	PECL Power Supply Current 10H 100H	_	70 65	85 80	_	70 70	85 85	_	70 75	85 95	mA	
ICCL	TTL Supply Current	_	100	120	_	100	120	_	100	120	mA	
Іссн	TTL Supply Current	_	100	120	_	100	120	_	100	120	mA	
los	Output Short Circuit Current	-100	_	-225	-100	_	-225	-100	_	-225	mA	

10H PECL DC ELECTRICAL CHARACTERISTICS(1)

 $VCCT = VCCE = 5.0V \pm 5\%$

		Ta= 0°C		Ta= +25°C		Ta= + 85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Iн	Input HIGH Current	_	225	_	145		145	μΑ	
lı∟	Input LOW Current	0.5	_	0.5	-	0.5	_	μΑ	
VIH	Input HIGH Voltage	3830	4160	3870	4190	3930	4280	mV	VCCT = 5.0V
VIL	Input LOW Voltage	3050	3520	3050	3520	3050	3555	mV	VCCT = 5.0V
VBB	Output Bias Voltage	3620	3730	3650	3750	3690	3810	mV	VCCT = 5.0V

Note:

100H PECL DC ELECTRICAL CHARACTERISTICS(1)

 $VCCT = VCCE = 5.0V \pm 5\%$

		Ta= 0°C		Ta= +25°C		Ta= + 85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
IIН	Input HIGH Current	_	225	_	145	_	145	μΑ	
lıL	Input LOW Current	0.5	_	0.5	_	0.5	_	μΑ	
VIH	Input HIGH Voltage	3835	4120	3835	4120	3835	4120	mV	VCCT = 5.0V
VIL	Input LOW Voltage	3190	3525	3190	3525	3190	3525	mV	VCCT = 5.0V
VBB	Output Bias Voltage	3620	3740	3620	3740	3620	3740	mV	VCCT = 5.0V

Note:

1. PECL VIL, VIH, VOL, VOH, VBB are given for VCCT = VCCE = 5.0V and will vary 1:1 with power supply.

^{1.} PECL VIL, VIH, VOL, VOH, VBB are given for VCCT = VCCE = 5.0V and will vary 1:1 with power supply.

10H/100H TTL DC ELECTRICAL CHARACTERISTICS(1)

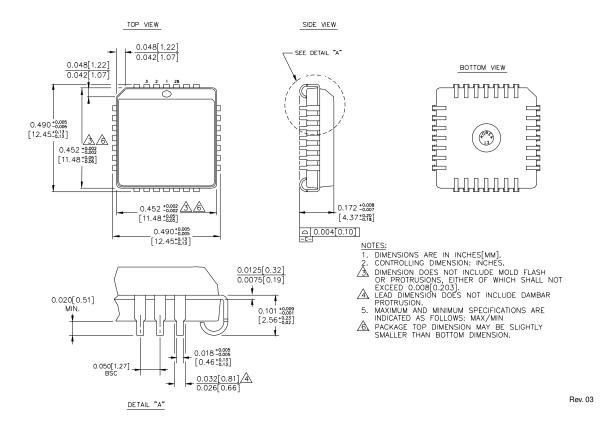
 $VCCT = VCCE = 5.0V \pm 5\%$

		Ta= 0°C		Ta= +25°C		Ta= + 85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Vон	Output HIGH Voltage	2.5 2.0	_	2.5 2.0		2.5 2.0		V	IOH = -15mA IOH = -24mA
Vol	Output LOW Voltage	_	0.55	_	0.55		0.55	V	IoL = 48mA

Note:

1. DC levels such as VOH, VOL, etc., are standard for PECL and FAST devices, with the exceptions of: IoL =48mA at 0.5 VoL; and IOH = 24mA at 2.0 VOH.

AC ELECTRICAL CHARACTERISTICS(1)


 $VCCT = VCCE = 5.0V \pm 5\%$

		TA= 0°C			Ta= +25°C			TA	\= + 85°	C		
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
tPD	Propagation Delay to Output CLK to Q MR to Q	_		6.0 6.0			6.0 6.0	_		6.0 6.0	ns	CL = 50 pF
tskpp	Part-to-Part Skew ^(1,4)	_	_	0.5	_	_	0.5	_	_	0.5	ns	CL = 50pF
tskew++	Within-Device Skew ^(2,4)	_	_	0.3	_	_	0.3	_	_	0.3	ns	CL = 50pF
tskew	Within-Device Skew ^(3,4)	_	_	0.3	_	_	0.3	_	_	0.3	ns	CL = 50pF
ts	Set-up Time	0.200	_	_	0.200	_	_	0.200	_	_	ns	
tH	Hold Time	0.500	_	_	0.500	_	_	0.500	_	_	ns	
tPW	Minimum Pulse Width CLK, MR	1.0	_	_	1.0	_	_	1.0	_	_	ns	
VPP	Minimum Input Swing	200	150	_	200	150	_	200	150	_	mV	
tr tf	Rise/Fall Time 1.0V to 2.0V	_	_	1.5	_		1.5		_	1.5	ns	CL = 50pF
fMAX	Max. Input Frequency ^(5,6)	160	_	_	160	_	_	160	_	_	MHz	

Notes:

- 1. Device-to-Device Skew considering HIGH-to-HIGH transitions at common Vcc level.
- 2. Within-Device Skew considering HIGH-to-HIGH transitions at common Vcc level.
- 3. Within-Device Skew considering LOW-to-LOW transitions at common Vcc level.
- 4. All skew parameters are guaranteed but not tested.
- 5. Frequency at which output levels will meet a 0.8V to 2.0V minimum swing.
- 6. The fMAX value is specified as the minimum guaranteed maximum frequency. Actual operational maximum frequency may be greater.

28-PIN PLCC (J28-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.