Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # ULTRA PRECISION DUAL 2:1 LVPECL MUX WITH INTERNAL TERMINATION Precision Edge[®] SY58026U ### **FEATURES** - Two independent differential 2:1 multiplexers - Guaranteed AC performance over temperature and voltage: - DC-to >5Gbps data rate throughput - <310ps IN-to-Out t_{pd} - <110ps t_r / t_f - Unique, patent-pending input isolation design minimizes crosstalk - Ultra-low jitter design: - <1ps_{RMS} random jitter - <10ps_{pp} deterministic jitter - <10ps_{pp} total jitter (clock) - <0.7ps_{RMS} crosstalk-induced jitter - Unique, patent-pending 50ý input termination and VT pin accepts DC-coupled and AC-coupled inputs (CML, LVDS, PECL) - 800mV LVPECL output swing - Power supply 2.5V ±5% or 3.3V ±10% - -40°C to +85°C temperature range - Available in 32-pin (5mm ∞ 5mm) MLF[®] package #### **APPLICATIONS** - Data communication systems - SONET applications - **■** Fibre Channel applications - GigE applications Precision Edge® ### **DESCRIPTION** The SY58026U features two ultra-fast, low jitter 2:1 differential muxes with a guaranteed maximum data throughput of 5Gbps. The SY58026U differential inputs include a unique internal termination design that allows access to the termination network through a VT pin. The device easily interfaces to different logic standards, both AC- and DC-coupled, without external resistor-bias and termination networks. The result is a clean, stub-free, low jitter interface solution. The differential 800mV LVPECL outputs have extremely fast rise/fall times guaranteed to be less than 110ps. The SY58026U operates from a 2.5V or 3.3V supply, and is guaranteed over the full industrial temperature range (–40°C to +85°C). The SY58026U is part of Micrel's Precision Edge[®] product family. All support documentation can be found on Micrel's web site at www.micrel.com. #### **FUNCTIONAL BLOCK DIAGRAM** crel, Inc. ogy, Inc. AnyGate and Precision Edge are registered trademarks of Micrel, Inc. *Micro*LeadFrame and MLF are trademarks of Amkor Technology, Inc. Rev.: E Amendment: /0 Issue Date: August 2007 ## PACKAGE/ORDERING INFORMATION 32-Pin MLF® (MLF-32) ## Ordering Information⁽¹⁾ | Part Number | Package
Type | Operating
Range | Package
Marking | Lead
Finish | |-----------------------------|-----------------|--------------------|---|-------------------| | SY58026UMI | MLF-32 | Industrial | SY58026U | Sn-Pb | | SY58026UMITR ⁽²⁾ | MLF-32 | Industrial | SY58026U | Sn-Pb | | SY58026UMG | MLF-32 | Industrial | SY58026U with
Pb-Free bar-line indicator | Pb-Free
NiPdAu | | SY58026UMGTR ⁽²⁾ | MLF-32 | Industrial | SY58026U with
Pb-Free bar-line indicator | Pb-Free
NiPdAu | #### Notes - 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC electricals only. - 2. Tape and Reel. ## PIN DESCRIPTION | Pin Number | Pin Name | Pin Function | | | | |-------------------------------------|---|--|--|--|--| | 25, 28,
29, 32,
1, 4,
5, 8 | INA0, /INA0,
INA1, /INA1,
INB0, /INB0,
INB1, /INB1 | Differential Inputs: These input pairs are the differential signal inputs to the device. Inputs accept AC- or DC-coupled differential signals as small as 100mV. Each pin of a pair internall terminates to a VT pin through 50ý. Note that these inputs will default to an indeterminate state if left open. Unused differential input pairs can be terminated by connecting one input to $V_{\rm CC}$ and the complementary input to GND through a 1ký resistor. The VT pin is to be left open in this configuration. Please refer to the "Input Interface Applications" section for more details. | | | | | 26, 30, 2, 6 | VTA0 , VTA1,
VTB0, VTB1 | Input Termination Center-Tap: Each side of the differential input pair, terminates to a VT pin. Each VT pin provides a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details. | | | | | 18, 15 | SELA, SELB | Bank A, Bank B Input Channel Select (TTL/CMOS): These TTL/CMOS-compatible inputs select the inputs to the multiplexers. These inputs are internally connected to a 25ký pull-up resistor and will default to a logic HIGH state if left open. Input switching threshold is $V_{\rm CC}/2$. | | | | | 27, 31, 3, 7 | VREF-ACA0,
VREF-ACA1,
VREF-ACB0,
VREF-ACB1 | Reference Output Voltage: These outputs bias to V_{CC} –1.2V. Connect to VT pin when AC-coupling the data inputs. Bypass with 0.01 μ F low ESR capacitor to V_{CC} . Maximum current source or sink is 0.5mA. See "Input Interface Applications" section. | | | | | 10, 13, 16,
17, 20, 23 | VCC | Positive Power Supply: Bypass with 0.1μF™ℑ0.01μF low ESR capacitors. | | | | | 22, 21,
12, 11 | QA, /QA,
QB, /QB | Differential 100k LVPECL Outputs: MUX A and MUX B selected LVPECL outputs. See "Output Interface Applications" section for termination. Refer to the "Truth Table" for logic operation. | | | | | 9, 24 | GND,
Exposed pad | Ground: Ground pins and exposed pad must be connected to the same ground plane. | | | | | 14, 19 | NC | Not connected. | | | | ## **Absolute Maximum Ratings**(1) | Power Supply Voltage (V _{CC}) | 0.5V to +4.0V | |--|--------------------------| | Input Voltage (V _{IN}) | –0.5V to V _{CC} | | LVPECL Output Current (I _{OUT}) | | | Continuous | 50mA | | Surge | 100mA | | Termination Current ⁽³⁾ | | | Source or sink current on V _T | ±100mA | | Input Current | | | Source or sink current on IN, /IN | ±50mA | | Current (V _{RFF-AC}) | | | Source or sink current on V _{REF-AC} ⁽³⁾ | ±1.5mA | | Lead Temperature (soldering, 20 sec.) | 260°C | | Storage Temperature Range (T _S) | –65°C to +150°C | | | | ## Operating Ratings⁽²⁾ | . +2.375V to +2.625V | |----------------------| | +3.0V to +3.6V | | 40°C to +85°C | | | | | | 35°C/W | | | | 20°C/W | | | ## DC ELECTRICAL CHARACTERISTICS(5) $T_A = -40$ °C to +85°C; unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-------------------------|---|--|----------------------|----------------------|----------------------|-------| | V_{CC} | Power Supply | V _{CC} = 2.5V
V _{CC} = 3.3V | 2.375
3.0 | 2.5
3.3 | 2.625
3.6 | V | | I _{CC} | Power Supply Current | No load, max. V _{CC} . | | 100 | 130 | mA | | R _{DIFF_IN} | Differential Input Resistance (IN-to-/IN) | | 80 | 100 | 120 | ý | | R _{IN} | Input Resistance
(IN-to-V _T , /IN-to-V _T) | | 40 | 50 | 60 | ý | | V_{IH} | Input High Voltage (IN, /IN) | Note 6 | V _{CC} −1.6 | | V _{CC} | V | | V_{IL} | Input Low Voltage (IN, /IN) | | 0 | | V _{IH} –0.1 | V | | V_{IN} | Input Voltage Swing (IN, /IN) | See Figure 1a. | 0.1 | | 1.7 | V | | V _{DIFF_IN} | Differential Input Voltage Swing IN - /IN | See Figure 1b. | 0.2 | | | V | | $\overline{V_{T_{IN}}}$ | In-to-V _T (IN, /IN) | | | | 1.28 | V | | V _{REF-AC} | Output Reference Voltage | | V _{CC} -1.3 | V _{CC} -1.2 | V _{CC} -1.1 | V | #### Notes: - Permanent device damage may occur if "Absolute Maximum Ratings" are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability. - 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings. - 3. Due to the limited drive capability, use for input of the same package only. - 4. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential (GND) on the PCB. Ψ_{JB} uses 4-layer θ_{JA} in still air unless otherwise stated. - 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. - 6. V_{IH} (min) not lower than 1.2V. ## LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS(6) V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to +85°C; R_L = 50ý to V_{CC} -2V, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------------|---|----------------|------------------------|------|------------------------|-------| | V _{OH} | Output High Voltage
Q, /Q | | V _{CC} -1.145 | | V _{CC} -0.895 | V | | V_{OL} | Output Low Voltage
Q, /Q | | V _{CC} -1.945 | | V _{CC} -1.695 | V | | V _{OUT} | Output Voltage Swing Q, /Q | See Figure 1a. | 550 | 800 | | mV | | V _{DIFF-OUT} | Differential Output Voltage Swing Q, /Q | See Figure 1b. | 1100 | 1600 | | mV | ## LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS(6) V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to 85°C unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------|--------------------|---------------|------|-----|-----|-------| | V _{IH} | Input HIGH Voltage | | 2.0 | | | V | | V _{IL} | Input LOW Voltage | | | | 0.8 | V | | I _{IH} | Input HIGH Current | | -175 | | 75 | μΑ | | I _{IL} | Input LOW Current | $V_{IL} = 0V$ | -300 | | | μΑ | #### Note: 6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. ## **AC ELECTRICAL CHARACTERISTICS**⁽⁷⁾ V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to +85°C; R_L = 50ý to V_{CC} -2V, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |---------------------------------|--|-----------------------------------|-----|-----|-----|-------------------| | f _{MAX} | Maximum Operating Frequency | V _{OUT} ž 400mV NRZ Data | 5 | 6 | | Gbps
GHz | | t _{pd} | Propagation Delay IN-to-Q | V _{IN} ž 300mV | 160 | 230 | 310 | ps | | | SEL-to-Q | | 100 | 220 | 400 | ps | | t _{SKEW} | Input-to-Input Skew (Within-bank) | Note 8 | | 7 | 15 | ps | | | Bank-to-Bank Skew | Note 9 | | 8 | 20 | ps | | | Part-to-Part Skew | Note 10 | | | 100 | ps | | t _{JITTER} | Data Random Jitter (RJ) | Note 11 | | | 1 | ps _{RMS} | | | Deterministic Jitter (DJ) | Note 12 | | | 10 | ps _{PP} | | | Clock Cycle-to-Cycle Jitter (RJ) | Note 13 | | | 1 | ps _{RMS} | | | Total Jitter (TJ) | Note 14 | | | 10 | ps _{PP} | | | Crosstalk-induced Jitter
Channel-to-Channel (Within-bank) | Note 15, Within-bank. | | | 0.7 | ps _{RMS} | | t _r , t _f | Output Rise/Fall Time 20% to 80% | At full swing. | 35 | 70 | 110 | ps | #### Notes: - 7. High-speed AC parameters are guaranteed by design and characterization. V_{IN} swing ž 100mV unless otherwise noted. - 8. Input-to-input skew is the difference in time between two inputs to the output within a bank. - 9. Bank-to-bank skew is the difference in time from input to the output between bank. - 10. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs. - 11. Random jitter is measured with a K28.7 comma detect character pattern, measured at 5Gbps and 2.5Gbps/3.2Gbps. - 12. Deterministic jitter is measured at 2.5Gbps/3.2Gbps, with both K28.5 and 2²³–1 PRBS pattern - 13. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_n T_{n-1}$ where T is the time between rising edges of the output signal. - 14. Total jitter definition: with an ideal clock input of frequency f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value. - 15. Crosstalk is measured at the output while applying two similar frequencies that are asynchronous with respect to each other at the inputs. #### **TRUTH TABLES** | INA0 | /INA0 | INA1 | /INA1 | SELA | QA | /QA | |------|-------|------|-------|------|----|-----| | 0 | 1 | Х | Х | 0 | 0 | 1 | | 1 | 0 | Х | Х | 0 | 1 | 0 | | Х | Х | 0 | 1 | 1 | 0 | 1 | | X | Х | 1 | 0 | 1 | 1 | 0 | | INB0 | /INB0 | INB1 | /INB1 | SELB | QB | /QB | |------|-------|------|-------|------|----|-----| | 0 | 1 | Х | Х | 0 | 0 | 1 | | 1 | 0 | Х | X | 0 | 1 | 0 | | Х | Х | 0 | 1 | 1 | 0 | 1 | | X | Х | 1 | 0 | 1 | 1 | 0 | ## SINGLE-ENDED AND DIFFERENTIAL SWINGS Figure 1a. Single-Ended Voltage Swing Figure 1b. Differential Voltage Swing ## TIMING DIAGRAM ## TYPICAL OPERATING CHARACTERISTICS V_{CC} = 3.3V, T_{A} = 25°C, R_{L} = 50ý to V_{CC} – 2V, DC coupled, unless otherwise stated. ## TYPICAL OPERATING CHARACTERISTICS $V_{\rm CC}$ = 3.3V, $T_{\rm A}$ = 25°C, $R_{\rm L}$ = 50ý to $V_{\rm cc}$ – 2V, DC coupled, unless otherwise stated. ## INPUT AND OUTPUT STAGE INTERNAL TERMINATION Figure 2a. Simplified Differential Input Stage Figure 2b. Simplified LVPECL Output Stage ### INPUT INTERFACE APPLICATIONS Figure 3a. DC-Coupled PECL Interface Figure 3b. AC-Coupled PECL Interface Figure 3c. LVDS Interface Option: May connecct V_T to V_{CC} . Figure 3d. DC-Coupled CML Interface Figure 3e. AC-Coupled CML Interface ## **OUTPUT INTERFACE APPLICATIONS** Figure 4a. Parallel Thevenin-Equivalent Termination Figure 4b. Parallel Termination (3-Resistor) Figure 4c. Terminating Unused Outputs ## RELATED MICREL PRODUCTS AND SUPPORT DOCUMENTATION | Part Number | Function | Data Sheet Link | |---------------|---|--| | SY58016L | 3.3V 10Gbps Differential CML Line Driver/Receiver with Internal Termination | http://www.micrel.com/product-info/products/sy58016l.shtml | | SY58017U | 10.7Gbps Differential CML 2:1 MUX with Internal Termination | http://www.micrel.com/product-info/products/sy58017u.shtml | | SY58018U | 5Gbps LVPECL 2:1 MUX with Internal Termination | http://www.micrel.com/product-info/products/sy58018u.shtml | | SY58019U | 10.7Gbps 400mV LVPECL 2:1 MUX with Internal Termination | http://www.micrel.com/product-info/products/sy58019u.shtml | | SY58025U | 10.7Gbps Dual 2:1 CML MUX with Internal Termination | http://www.micrel.com/product-info/products/sy58025u.shtml | | SY58027U | 10.7Gbps Dual 2:1 400mV LVPECL MUX with Internal Termination | http://www.micrel.com/product-info/products/sy58027u.shtml | | SY58051U | 10.7Gbps AnyGate [®] with Internal Input and Output Termination | http://www.micrel.com/product-info/products/sy58051u.shtml | | SY58052U | 10Gbps Clock/Data Retimer with 50ý Input Termination | http://www.micrel.com/product-info/products/sy58052u.shtml | | | MLF™ Application Note | www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf | | HBW Solutions | New Products and Applications | www.micrel.com/product-info/products/solutions.shtml | ## 32-PIN MicroLeadFrame® (MLF-32) NOTE - 1. 2. 3. - ALL DIMENSIONS ARE IN MILLIMETERS. MAX. PACKAGE WARPAGE IS 0.05 mm. MAXIMUM ALLOWABE BURRS IS 0.076 mm IN ALL DIRECTIONS. PIN #1 ID ON TOP WILL BE LASER/INK MARKED. ТПМ PCB Thermal Consideration for 32-Pin MLF® Package (Always solder, or equivalent, the exposed pad to the PCB) #### Package Notes: - 1. Package meets Level 2 Moisture Sensitivity Classification. - 2. All parts are dry-packaged before shipment. - 3. Exposed pads must be soldered to a ground for proper thermal management. ### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2006 Micrel, Incorporated.