

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SY733021U

2.5/3.3V 1-to-1 Differential to LVCMOS/LVTTL Translator

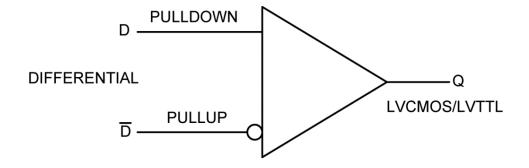
Precision Edge®

General Description

Micrel's SY733021U is a 1-to-1, differential-to-LVCMOS / LVTTL translator. The differential input is highly flexible and can accept LVPECL, LVDS, LVHSTL, SSTL, and HCSL input types.

SY733021U is part of Micrel's Precision Edge product line, is pin-to-pin compatible with IDT's ICS83021I and is available as a Pb-free 8-pin SOIC in either tube or tape and reel packaging. The SY733021U runs on a 2.5V ($\pm 5\%$) or a 3.3V ($\pm 10\%$) power supply and is guaranteed over the full industrial temperature range (-40°C to +85°C).

Datasheets and support documentation are available on Micrel's web site at: www.micrel.com.


Features

- Differential LVPECL, LVDS, LVHSTL, SSTL, and HCSL inputs
- 350MHz maximum frequency
- Additive phase jitter:
 - 90fs_{RMS}, 100MHz (637kHz to 10MHz)
- <500ps part-to-part skew
- 1.9ns typical propagation delay (V_{CC} = 2.5V)
- 2.5V ±5% or 3.3V ±10% power supply operation
- -40°C to +85°C industrial operating temperature
- Available in 8-pin SOIC lead-free package

Applications

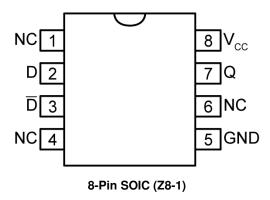
- Clock distribution
- PCIExpress[®]
- Servers
- Switches
- Routers

Functional Block Diagram

 $\label{eq:precision} \textit{Precision Edge} \ \textit{is a registered trademark of Micrel, Inc.}$

PCI-Express is a registered trademark of PCI-SIG.

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com


Ordering Information⁽¹⁾

Part Number	Package Type	Package Type		Lead Finish
SY733021UZG	8L SOIC	Industrial	SY733021U with Pb-Free Bar-Line Indicator	NiPdAu
SY733021UZGTR ⁽²⁾	8L SOIC	Industrial	SY733021U with Pb-Free Bar-Line Indicator	NiPdAu

Note:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25$ °C, DC Electricals only.
- 2. Tape and reel.

Pin Configuration

Pin Description

Pin Number	Pin Name	Functional Description
7	Q	TTL Output
2, 3	D, /D	Differential Inputs
8	V _{CC}	+3.3V or +2.5V Power Supply
5	GND	Ground
1, 4, 6	NC	No Connect

Truth Table

D	/D	Q
L	Н	L
Н	L	Н
Open	Open	L

Absolute Maximum Ratings⁽³⁾

Operating Ratings⁽⁴⁾

Supply Voltage (V _{CC})	+2.5V ± 5% or +3.3V ± 10%
Ambient Temperature (T _A)	40°C to +85°C
Junction Thermal Resistance	
SOIC (θ _{JA})	113°C/W

DC Electrical Characteristics⁽⁵⁾

 $V_{CC} = +2.5V \pm 5\%$ or $+3.3V \pm 10\%$; $T_A = -40$ °C to +85°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V	Power Supply Voltage	2.375	2.375	2.5	2.625	.,
V _{CC}			2.97	3.3	3.63	V
Icc	Power Supply Current				20	mA

TTL DC Electrical Characteristics (5, 6)

 $T_A = -40$ °C to +85°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
V	Output High Voltage	V _{CC} = 2.625V	1.8			V
V _{OH}		$V_{CC} = 3.63V$	2.6			
V _{OL}	Output Low Voltage	V _{CC} = 2.625V or 3.63V			0.5	V

Differential Input DC Electrical Characteristics⁽⁵⁾

 $V_{CC} = +2.5V \pm 5\%$ or $+3.3V \pm 10\%$; $T_A = -40$ °C to +85°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
I _{IH}	Input High Current	D, $V_{IN} = V_{CC} = 3.63V$ or $2.625V$			150	
		$/D$, $V_{IN} = V_{CC} = 3.63V$ or $2.625V$			5	μΑ
I _{IL}	Input Low Current	D, $V_{IN} = 0V$, $V_{CC} = 3.63V$ or $2.625V$	-5			
		$/D$, $V_{IN} = 0V$, $V_{CC} = 3.63V$ or $2.625V$	-150			μΑ
V_{PP}	Peak-to-Peak Input Voltage	V _{IL} ≥ -0.3V	0.15		1.3	V
V _{IHCMR}	Input High Common Mode Range	Note 7	GND + 0.5		V _{CC} - 0.85	٧

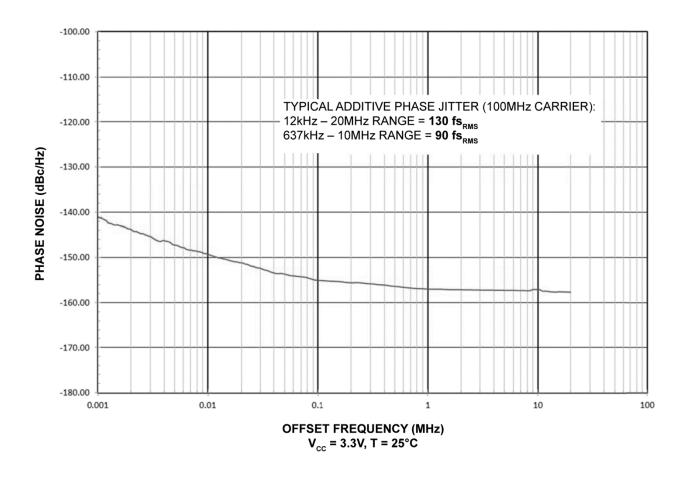
Notes:

- 3. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions may affect device reliability.
- 4. The datasheet limits are not guaranteed if the device is operated beyond the recommended operating conditions.
- 5. The circuit is designed to meet the DC specifications shown in the above tables after thermal equilibrium has been established.
- 6. Outputs terminated with 50Ω to V_{CC}/2. See Parameter Measurement Set-Up.
- 7. VIHCMR maximum varies 1:1 with V_{CC}. The VIHCMR range is referenced to the most positive side of the differential input signal.

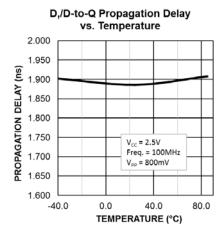
AC Electrical Characteristics

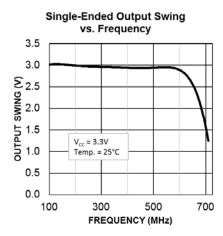
 V_{CC} = +2.5V ±5% or +3.3V ±10%; T_A = -40°C to +85°C

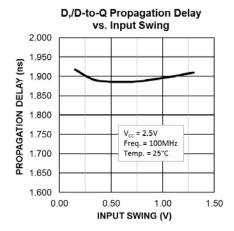
Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
f _{MAX}	Maximum Frequency		350			MHz
	Propagation Delay	Note 8, +2.5V ±5% supply	1.7	1.9	2.5	ns
t _{PD}		Note 8, +3.3V ±10% supply	1.5	1.8	2.3	
t _{Skew}	Part-to-Part skew	Notes 9 and 10			500	ps
	0	20%-80% at 100 MHz, +2.5V ±5% supply	125	000	400	ps
t _R , t _F	Output Rise/Fall Times	20%-80% at 100 MHz, +3.3V ±10% supply	100	200	400	
T _{RJ_Jitter}	Additive Phase Jitter	12kHz-20MHz at 100MHz		130		fs _{RMS}
		637kHz-10MHz at 100MHz		90		fs _{RMS}
T _{DCY}	Duty Cycle		45	50	55	%

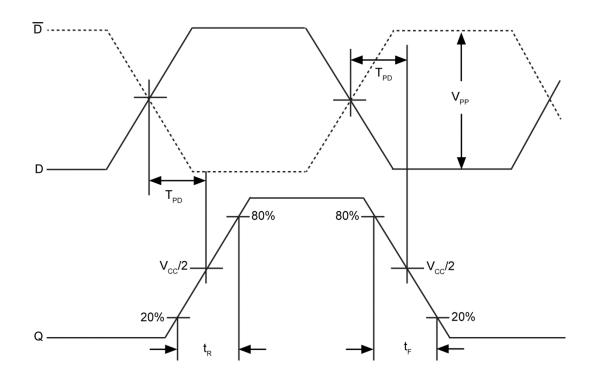

Notes:

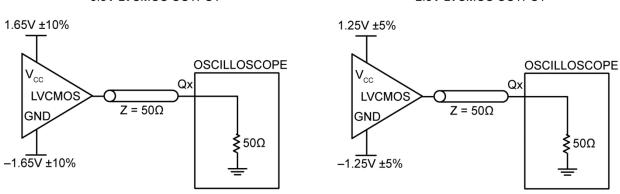
^{8.} Measured from the differential input crossing point to $V_{\mbox{\tiny co}}/2$ at the output.


^{9.} Part-to-Part skew is the difference in time between outputs receiving data from the same input, for the same temperature, voltage, and transition.

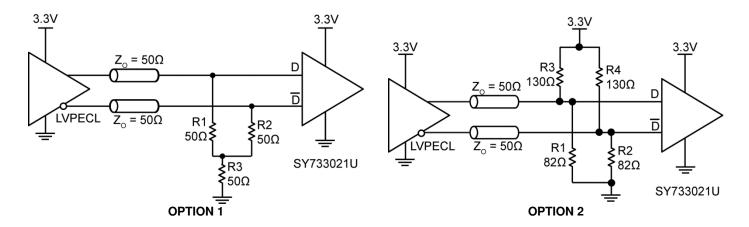

^{10.} This parameter is defined in accordance with JEDEC Standard 65.


Additive Phase Noise Plot

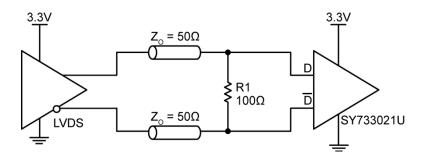

Typical Operating Characteristics


Timing Diagram and Definition of Input Swing

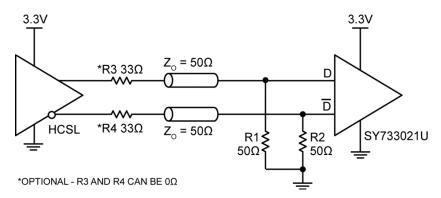
Parameter Measurement Set-Up


3.3V LVCMOS OUTPUT

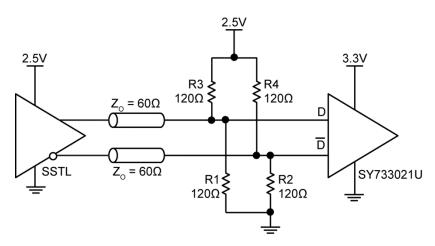
2.5V LVCMOS OUTPUT



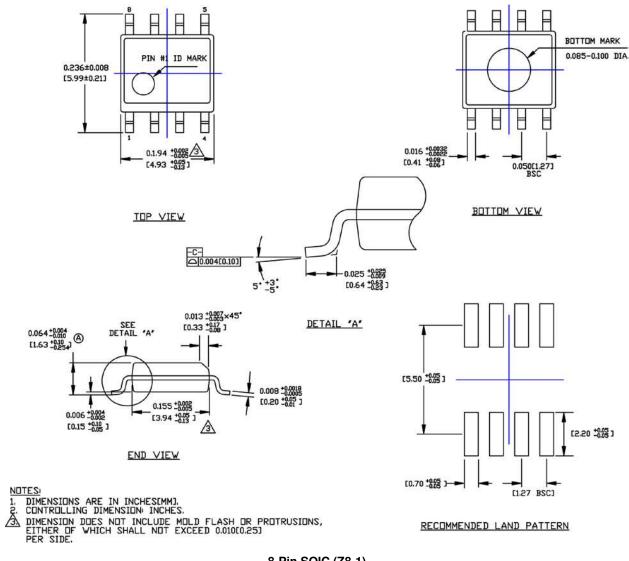
Output Load AC Test Circuit


Input Interface Applications

D, /D Input Driven by a 3.3V LVPECL Driver



D, /D Input Driven by a 3.3V LVDS Driver


D, /D Input Driven by an HCSL Driver

Input Interface Applications (Continued)

D, /D Input Driven by a 2.5V SSTL Driver

Package Information⁽¹¹⁾

8-Pin SOIC (Z8-1)

Note:

11. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2014 Micrel. Incorporated.