Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China #### SY75578L ### PCIe Fanout Buffer 267MHz, 8 HCSL Outputs with 2 Input MUX ### PrecisionEdge™ ### **General Description** The SY75578L is a high-speed, fully differential 1:8 clock fanout buffer optimized to provide eight identical output copies with 130fs phase jitter and maximum 100ps output-to-output skew. Designed to be used with PCI-Express applications, SY75578L accepts HCSL/LVDS and outputs HCSL logic levels. The SY75578L operates from a 3.3V $\pm 5\%$ power supply and is guaranteed over the full industrial temperature range (-40°C to +85°C). It is available in a 32 pin QFN lead-free package. The SY75578L is part of Micrel's high-speed, ultra-low jitter, PrecisionEdge™ product line. Datasheets and support documentation are available on Micrel's web site at: www.micrel.com. #### **Features** - · Eight differential pairs of HCSL outputs - Two pairs of differential inputs accept LVDS or HCSL logic levels - 267MHz max frequency - Ultra low phase jitter: - $130 fs_{rms}$, 200MHz (12kHz–20MHz) - <100ps output-to-output skew - 3.3V ±5% power supply operation - -40°C to +85°C Industrial operating temperature - Available in 32-pin QFN lead-free package ### **Applications** - Blade servers - Desktop servers - Workstations - Storage area networks - IP routers and switches - Telecom and datacom - High performance computing ### **Functional Block Diagram** Precision Edge is a registered trademark of Micrel, Inc. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com December 4, 2013 120413-1.1 # Ordering Information⁽¹⁾ | Part Number | Package Type | Operating Range | Package Marking | Lead Finish | |------------------------------|--------------|-----------------|---|-------------| | SY75578LMG | QFN-32 | Industrial | SY75578L
with Pb-Free bar-line indicator | NiPdAu | | SY75578LMG TR ⁽²⁾ | QFN-32 | Industrial | SY75578L
with Pb-Free bar-line indicator | NiPdAu | #### Notes: - 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only. - 2. Tape and Reel. ## **Pin Configuration** # **Pin Description** | Pin Number | Pin Name | Pin Function | | | | |----------------|------------------------|--|--|--|--| | 7 | SEL | Single-Ended Input: This single-ended TTL/CMOS compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a pull-up resistor and will default to logic HIGH state if left open. SEL = 1 propagates IN0, /IN0 to outputs. SEL=0 propagates IN1, /IN1 to outputs. | | | | | 4 | VDDIN | Positive Power Supply: 3.3V Power supply. Bypass with 0.1µF 0.01µF low ESR capacitors as close to the VDDIN pin as possible. | | | | | 2, 3 | INO, /INO | HCSL/LVDS Differential Input Pairs: These input pairs accept HCSL or LVDS differential signal | | | | | 5, 6 | IN1, /IN1 | inputs. | | | | | 1 | /PD | PD = 0 powers down the chip and tri-states outputs. Pin is attached to an internal pull-up resistor. | | | | | 9 | OE | Single-Ended Input: This TTL/CMOS input disables and enables the Q0-Q7outputs. OE is asynchronous. High = enable outputs, Low = tri-state outputs. Internal pull-up resistor makes outputs enabled by default. | | | | | 20, 21, 32 | GND,
EXPOSED
PAD | Ground: Exposed pad must be connected to a ground plane that is the same potential as the ground pins | | | | | 8 | IREF | External resistor between pin Iref and GND controls reference current. | | | | | 11, 10 | Q7, /Q7 | | | | | | 14, 13 | Q6, /Q6 | | | | | | 16, 15 | Q5, /Q5 | | | | | | 19, 18 | Q4, /Q4 | HCSL Differential Output Pairs: Differential buffered output copies of the selected input signal. | | | | | 23, 22 | Q3, /Q3 | These differential outputs are a logic function of the IN0, IN1, and SEL inputs. | | | | | 26, 25 | Q2, /Q2 | | | | | | 28, 27 | Q1, /Q1 | | | | | | 31, 30 | Q0, /Q0 | | | | | | 12, 17, 24, 29 | VDD | Positive Power Supply: 3.3V Power supply. Bypass with 0.1µF 0.01µF low ESR capacitors as close to the Vod pins as possible. | | | | ## Absolute Maximum Ratings(3) | Supply Voltage (V _{DD,} V _{DDIN}) | 5.5V | |--|------------------------------| | Input Voltage (V _{IN}) | $-0.5V$ to $V_{DDIN} + 0.5V$ | | Lead Temperature (soldering, 20s) | 260°C | | Maximum Junction Temperature | 125°C | | Storage Temperature (T _s) | 65°C to +150°C | | ESD Protection (input) | 2000V min. | # Operating Ratings⁽⁴⁾ | Supply Voltage (V _{DD,} V _{DDIN}) | 3.135V to 3.465V | |--|------------------| | Ambient Op Temperature (T _A) | 40°C to +85°C | | Package Thermal Resistance ⁽⁵⁾ | | | QFN-32 | | | Still-air (θ_{JA}) | 50°C/W | | Junction-to-Board (θ_{1B}) | 20°C/W | ### Electrical Characteristics⁽⁵⁾ $V_{DD} = V_{DDIN} = 3.135V$ to 3.465V, $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated. Rref = 475Ω | Symbol | Parameter | Condition | Min. | Тур. | Max. | Units | |---------------------------------------|--------------------------------------|--------------------------|-------|------|------------------|----------| | V _{DD} , V _{DDIN} | Power Supply Voltage Range | | 3.135 | 3.3 | 3.465 | ٧ | | R _{out} | Output Resistance | | 3 | | | kΩ | | R _{pull up} | Pull up Resistance | SEL, /PD, OE | | 110 | | kΩ | | V _{IH} | Input High Voltage | SEL, /PD, OE | 2 | | $V_{DDIN} + 0.3$ | ٧ | | V _{IL} | Input Low Voltage | SEL, /PD, OE | -0.3 | | 0.8 | V | | V _{IH} | Input High Voltage | LICCL IN /IN | 660 | 750 | 850 | mV | | V _{IL} | Input Low Voltage | HCSL, IN, /IN | -150 | 0 | | | | V _{IN} | Input Voltage Swing | LVDS, IN, /IN | 250 | 350 | 450 | mV | | V _{input offset} | Input Common Mode Voltage | LVDS, IN, /IN, | 1.125 | 1.25 | 1.375 | ٧ | | V _{OH} | Output High Voltage | HCSL | 660 | 750 | 850 | mV | | V _{OL} | Output Low Voltage | HCSL | -150 | 0 | 27 | mV | | Vcross ^(7, 8) | Crossing Point Voltage | Absolute | 250 | 350 | 550 | mV | | Vcross_variation ^(7, 8, 9) | Variation of Crossing Point Voltage | Variation over all edges | | | 140 | mV | | lod | Power Supply Current For VDD + VDDIN | Load 50Ω, 2pF | | 140 | 200 | mA | | | | No load, /PD = Low | | | 0.4 | mA | | | - DD · - DDIIN | OE = Logic Low | | | 20 | mA | | I _{IL} ⁽¹⁰⁾ | Input Leakage Current | $0 < V_{IN} < V_{DDIN}$ | -5 | | 5 | μΑ | #### Notes: - 3. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this datasheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability. - 4. The datasheet limits are not guaranteed if the device is operated beyond the operating ratings. - Package thermal resistance assumes that the exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. ψ_{JB} and θ_{JA} values are determined for a 4-layer board in still-air unless otherwise stated. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. - 6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. - 7. Test setup is $R_L = 50\Omega$ with 2pF, $Rr = 475\Omega \pm 1\%$. - 8. Measurement taken from Q and /Q. - 9. Measured at the crossing point where instantaneous voltages of Q and /Q are equal. - 10. Inputs with pull-up/pull-down resistances are not included. # AC Electrical Characteristics⁽⁶⁾ $V_{DD} = V_{DDIN} = 3.135V$ to 3.465V, $T_A = -40^{\circ}C$ to +85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min. | Тур. | Max. | Units | |---------------------------------|---|--------------------------------|------|------|------|-------------------| | f _{MAX} | Maximum Frequency | | 267 | | | MHz | | t _{PD} | Propagation Delay | Note 11 | | 2 | 3 | ns | | t _{Skew} | Output-to-Output skew | Notes 12, 13 | | | 100 | ps | | t _R , t _F | Output Rise/Fall Times
0.175V to 0.525V / 0.525V to 0.175V | At full output swing. 50Ω, 2pF | 150 | 350 | 650 | ps | | | | At 200MHz | | 130 | | fs _{rms} | | T_{RJ_Jitter} | Phase Jitter | At 156.25MHz | | 150 | | fs _{rms} | | | | At 100MHz | | 200 | | fs _{rms} | | T _{OE_enable} | Output Enable Time | All Outputs | | 2 | | μs | | T _{OE_disable} | Output Disable Time | All Outputs | | 10 | | ns | | T _{DCY} | Duty Cycle | | 45 | 50 | 55 | % | #### Notes: ^{11.} Measured from the differential input crossing point to the differential output crossing point. ^{12.} Output-to-Output skew is the difference in time between outputs, receiving data from the same input, for the same temperature, voltage, and transition. ^{13.} This parameter is defined in accordance with JEDEC Standard 65. #### **Phase Noise Plots** Phase jitter = 132fs_{rms}, 200MHz carrier frequency; integration range: 12kHz-20MHz Phase jitter = 145fs_{rms}, 156.25MHz carrier frequency; integration range: 12kHz-20MHz Phase jitter = 204fs_{rms}, 100MHz carrier frequency; integration range: 12kHz-20MHz ### **Functional Characteristics** ## **HCSL Waveform Diagram** ## **HCSL Interface Application** **PCI-Express Device Routing** ## Package Information⁽¹⁴⁾ #### 32-Pin QFN #### Note: 14. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com. #### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2013 Micrel, Incorporated