

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

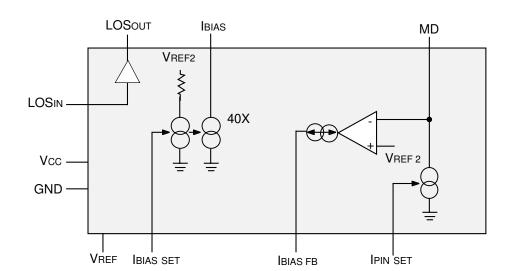
LASER DIODE CONTROLLER WITH APC

SY88905

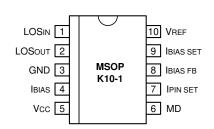
FEATURES

- DC bias current adjustable to 25mA
- Buffered Loss-of-Signal output when used with SY88903
- Monitor Diode power control circuit
- Designed for use with SY88902 and SY88903
- Single power supply
- Available in 10-pin (3mm) MSOP

APPLICATIONS


- **■** Controller for High Speed Optical Data Transmission
- 1.25Gbps Gigabit Ethernet
- 531 Mbps and 1062Mbps Fibre Channel
- 622Mbps SONET
- Gigabit Interface Converter

DESCRIPTION


The SY88905 is an integrated Laser Diode controller for the SY88902 Laser Driver and SY88903 Laser Receiver that provides power control functions for a complete module solution. The SY88905 is designed to provide the laser diode with an independent DC threshold current (IBIAS) source to assure optimum laser diode performance. The SY88905 also provides buffered Loss-of-Signal (LOS) output in PECL level. The device is designed for fast and accurate calibration of the laser diode.

Once the optimal operating point is determined and set for a specific laser diode, the threshold current (IBIAS) is designed to automatically compensate for laser diode aging and module temperature.

BLOCK DIAGRAM

PACKAGE/ORDERING INFORMATION

10-Pin MSOP (K10-1)

Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY88905KC	K10-1	Commercial	905	Sn-Pb
SY88905KCTR ⁽¹⁾	K10-1	Commercial	905	Sn-Pb
SY88905KH	K10-1	Commercial	905 with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY88905KHTR ⁽¹⁾	K10-1	Commercial	905 with Pb-Free bar-line indicator	Pb-Free NiPdAu

Note:

1. Tape and Reel.

PIN NAMES

Pin	Туре	Description
Vcc	Power	Positive Power supply
GND	Power	Ground
LOSIN	TTL Input	Loss-of-Signal Input from SY88903
VREF	Analog Output	Reference Voltage
IPIN SET	Analog Input	Adjustable, Resistor to VREF sets Monitor Diode Photo Current Reference
LOSout	PECL Output	Loss-of-Signal PECL output
IBIASFB	Analog Output	Monitor Diode Feedback
IBIASSET	Analog Input	Adjustable, Resistor to VREF sets the DC bias current for the Laser Diode
MD	Analog Input	Monitor Diode Connection
IBIAS	Analog Input	DC bias current for the Laser Diode

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Value	Unit
Vcc	Power Supply Voltage	0 to +7.0	V
LOSIN	Input Voltage	0 to Vcc	V
LOSOUT, IPIN SET IBIASFB, IBIAS SET	Others; I/O Voltage	-0.3, Vcc +0.3	V
ТА	Operating Temperature Range	0 to +85	°C
Tstore	Storage Temperature Range	-55 to +125	°C
IPIN SET, IBIAS SET, IMD	Max. Sink Current	1	mA
İBIASFB	Max. Source Current	1	mA
IBIAS	Max. Sink Current	30	mA
IVREF	Max. Source Current	2	mA

Note:

100H ECL DC ELECTRICAL(1)

 $VCC = +5V \pm 10\%$

		TA = 0°C		TA = +	-25°C	TA = 4	-85°C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
Vон	Output HIGH Voltage	Vcc - 1025	Vcc-880	Vcc - 1025	Vcc-880	Vcc – 1025	Vcc-880	mV	50Ω to Vcc–2V
Vol	Output LOW Voltage	Vcc -1810	Vcc -1620	Vcc -1810	Vcc -1620	Vcc -1810	Vcc-1620	mV	50Ω to Vcc–2V

Note:

1. 100H circuits are designed to meet the DC specifications shown in the table where transverse airflow greater than 500lfpm is maintained.

^{1.} Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $VCC = +5V \pm 10\%$

		Ta = 0°C		TA = +25°C			TA = +85°C					
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Conditions
Icc	Power Supply Current			40	_	28	40			40	mA	No output load
IBIAS SET	IBIAS SET Input Current	1		0.9	_		0.9			0.9	mA	
IBIAS	IBIAS Output Current	0.5	_	25	0.5		25	0.5	_	25	mA	
ABIAS	IBIAS Current Gain	28	_	44	28	37	44	28	_	44		=lbias / lbias set
VREF	Reference Voltage	2.30		3.30	2.30	2.75	3.30	2.30		3.30	٧	IREF = -100μA
ΔV PIN SET	VPIN SET Voltage Tracking	0.95	_	1.35	0.95	1.13	1.35	0.95		1.35	٧	=VREF - VPIN SET
ΔV BIAS SET	VBIAS Voltage Tracking	0.8	_	1.20	0.8	1.0	1.20	0.8		1.20	٧	=VREF - VBIAS SET
VCOMP BIAS	Compliance Voltage	0.1	_	1.0	0.1	0.4	1.0	0.1	_	1.0	٧	IBIAS = 15mA
İBIAS FB	Feedback Current ⁽¹⁾	350			350	500		350			μА	
ABIAS FB	Feedback Gain ⁽²⁾	4		14	4		14	4		14		

Notes:

- 1. $|IMD IPIN SET| = 100 \mu A$
- 2. | IBIAS FB | / | IMD IPIN SET |

TTL DC ELECTRICAL CHARACTERISTICS

 $VCC = +5V \pm 10\%$

		TA = 0°C		TA = +25°C		TA = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	Condition
VIH	Input HIGH Voltage	2.0	_	2.0	_	2.0	_	٧	_
VIL	Input LOW Voltage	_	0.8	_	0.8	_	0.8	V	_
Іін	Input HIGH Current		20 100		20 100	_	20 100	μА	VIN = 2.7V VIN = VCC
lı∟	Input LOW Current		-0.3		-0.3	_	-0.3	mA	VIN = 0.5V
VIK	Input Clamp Voltage	_	-1.2	_	-1.2	_	-1.2	٧	IIN = -12mA

Note:

DETAILED DESCRIPTION

The SY88905 is an integrated control circuit for laser diode modules intended for high-frequency fiber-optic applications. The device is designed to operate with the SY88902 laser diode driver providing Automatic Power Control (APC) which provides bias current control and monitor diode interface. The device also interfaces with the SY88903 high-speed limiting amplifier providing chatter-free Loss of Signal function.

Laser Diode Supply Current

The SY88905 provides the adjustable drive current for the laser diode, DC bias.

Monitor Diode

The MD pin on the SY88905 provides low frequency light intensity, laser power out feedback from the monitor diode in the laser diode package. This feedback is used to adjust the IBIAS level through the Automatic Power Control circuit to maintain a near constant power output from the laser diode.

^{1.} Individual product specifications over-ride general specifications.

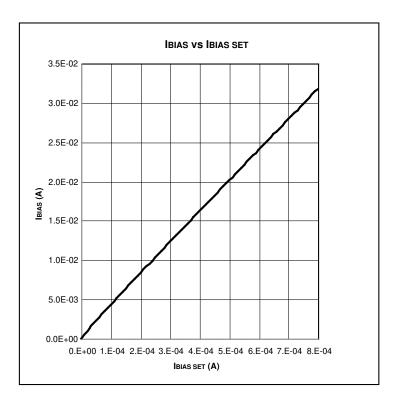


Figure 1. IBIAS V. IBIAS SET

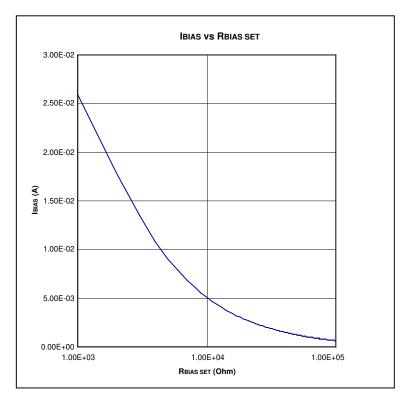


Figure 2. IBIAS V. RBIAS SET

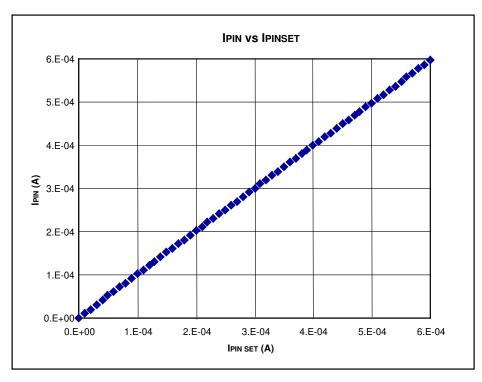


Figure 3. IPIN V. IPIN SET

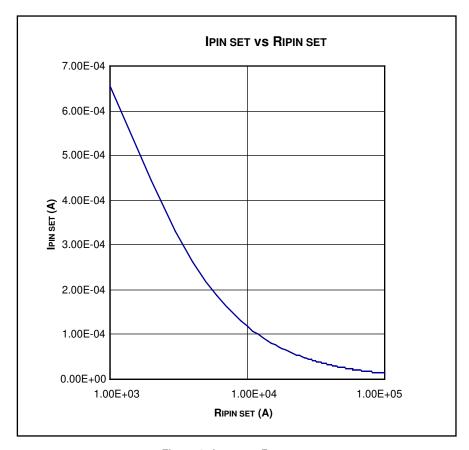


Figure 4. IPIN SET V. RPIN SET

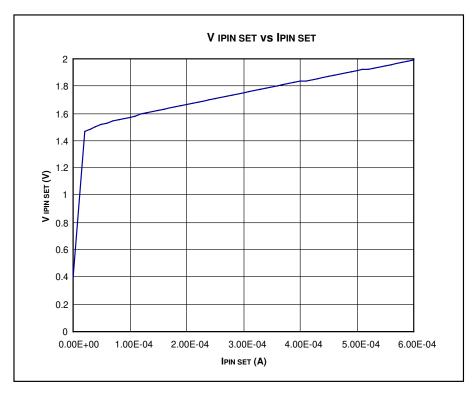


Figure 5. V IPIN SET V. IPIN SET

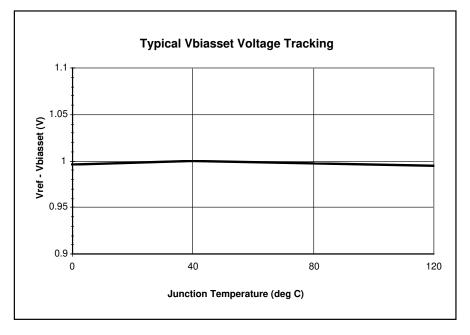


Figure 6. Typical VBIAS SET Voltage Tracking

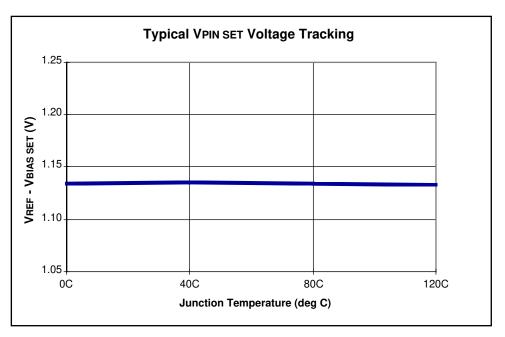
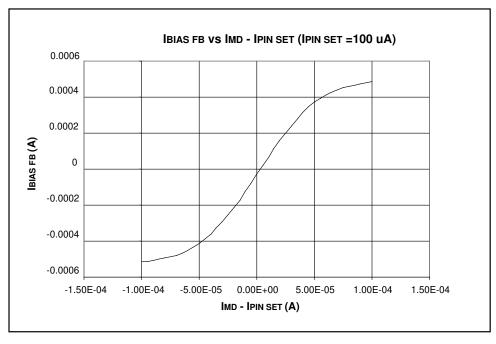
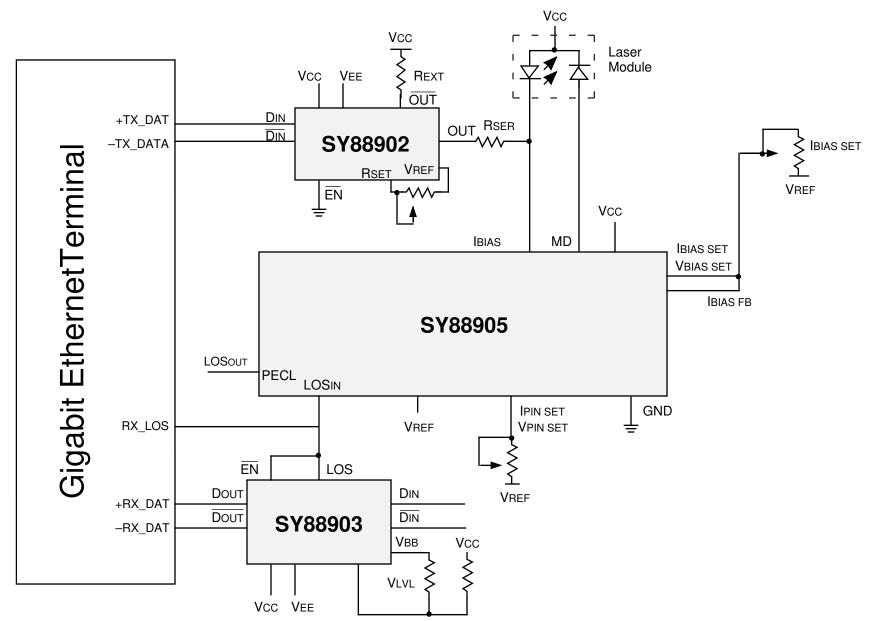
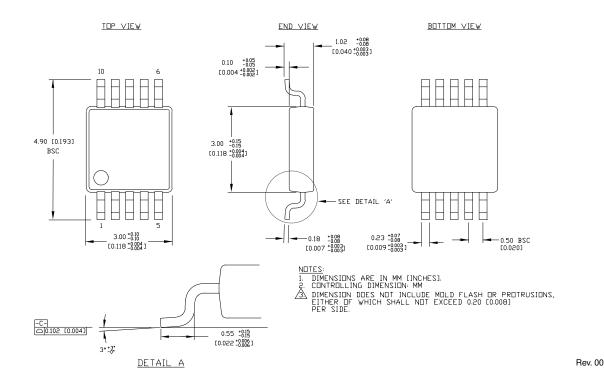


Figure 7. Typical VPIN SET Voltage Tracking


Figure 8. IBIAS FB VS. IMD - IPIN SET

6

APPLICATION EXAMPLE FOR 3-CHIP SET SOLUTION

10 LEAD MSOP (K10-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.