imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

5V/3.3V 2.5Gbps HIGH-SPEED LIMITING POST AMPLIFIER

FEATURES

- 3.3V and 5V power supply options
- Up to 2.5Gbps operation
- Low noise
- Chatter-Free LOS Generation
- Open Collector TTL LOS Output
- TTL /EN Input
- Differential PECL inputs for data
- Single power supply
- Designed for use with Micrel's Laser Diode Driver and Controller
- Available in a tiny 10-pin (3mm) MSOP

APPLICATIONS

- 1.25Gbps and 2.5Gbps Gigabit Ethernet
- 531Mbps, 1062Mbps and 2.12Gbps Fibre Channel
- 622Mbps SONET
- Gigabit Interface Converter
- 2.5Gbps SDH/SONET
- 2.5Gbps Proprietary Links

DESCRIPTION

The SY88923V limiting post amplifier with its high gain and wide bandwidth is ideal for use as a post amplifier in fiber-optic receivers with data rates up to 2.5Gbps. Signals as small as $5mV_{PP}$ can be amplified to drive devices with PECL inputs. The SY88923V generates a chatter-free Loss of Signal (LOS) open collector TTL output.

The SY88923V incorporates a programmable level detect function to identify when the input signal has been lost. The LOS output will change from logic "LOW" to logic "HIGH" when input signal is smaller than the swing set by LOS_{LVL} . This information can be fed back to the EN input of the device to maintain stability under loss of signal condition. Using LOS_{LVL} pin, the sensitivity of the level detection can be adjusted. The LOS_{LVL} voltage can be set by connecting a resistor divider between V_{CC} and V_{REF} show in Figure 3. Performance Curves show the relationship between input level sensitivity and the voltage set on LOS_{LVL} .

The LOS output is a TTL open collector output that requires a pull-up resistor for proper operation, Figure 1.

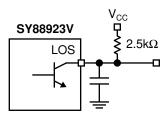
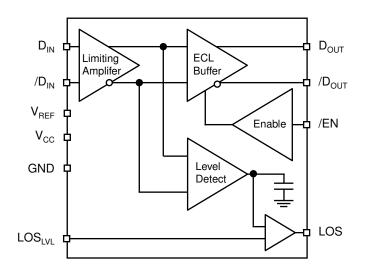
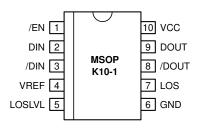




Figure 1. LOS Output with Desired Rise Time

BLOCK DIAGRAM

PACKAGE/ORDERING INFORMATION

10-Pin MSOP (K10-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY88923VKC	K10-1	Commercial	923V	Sn-Pb
SY88923VKCTR ⁽²⁾	K10-1	Commercial	923V	Sn-Pb
SY88923VKG ⁽³⁾	K10-1	Industrial	923V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY88923VKGTR ^(2, 3)	K10-1	Industrial	923V with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

PIN NAMES

Pin	Туре	Function
D _{IN}	Data Input	Data Input
/D _{IN}	Data Input	Inverting Data Input
LOS _{LVL}	Input	LOS Limit Set
/EN	TTL Input	Output Enable (Active Low)
LOS	TTL Output (Open Collector)	Loss of Signal Indicator (Active High)
GND	Ground	Ground
/D _{OUT}	PECL Output	Inverting Data Output
D _{OUT}	PECL Output	Data Output
V _{CC}	Power Supply	Positive Power Supply
V _{REF}	Output	Reference Voltage Output for LOS Level Set (see Fig. 3)

GENERAL DESCRIPTION

General

The SY88923V is an integrated limiting amplifier intended for high-frequency fiber-optic applications. The circuit connects to typical trans-impedance amplifiers found within a fiber-optics link. The linear signal output from a transimpedance amplifier can contain significant amounts of noise, and may vary in amplitude over time. The SY88923V limiting amplifier quantizes the signal and outputs a voltage-limited waveform.

The /EN pin allows the user to disable the output signal without removing the input signal.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
V _{CC}	Power Supply Voltage	0 to +7.0	V
D _{IN} , /D _{IN}	Input Voltage	0 to V _{CC}	V
D _{OUT} , /D _{OUT}	Output Voltage (with 50 Ω load)	V_{CC} –2.5 to V_{CC} +0.3	V
/EN	Input Voltage	0 to V _{CC}	V
LOS _{LVL}	Input Voltage	0 to V _{CC}	V
V _{REF}	Output Voltage	V_{CC} –2.0 to V_{CC}	V
T _A	Operating Temperature Range	-40 to +85	°C
T _{store}	Storage Temperature Range	-55 to +125	°C

Note:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $\overline{V_{CC}}$ = +5V ±10% or +3.3V ±10%, R_{LOAD} = 50 Ω to V_{CC} -2V

		T _A = -40°C		T _A = 0°C		T _A = +25°C			T _A = +85°C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit
I _{CC}	Power Supply 5V Current ⁽¹⁾ 3.3V		40 40		40 40	—	30 28	40 40		45 45	mA
I _{IL}	/EN Input LOW Current	-0.3(6)	_	-0.3 ⁽⁶⁾	—	-0.3 ⁽⁶⁾	_	_	-0.3 ⁽⁶⁾	—	mA
I _{IH}	/EN Input HIGH Current		20 ⁽⁴⁾ 100 ⁽⁵⁾		20 ⁽⁴⁾ 100 ⁽⁵⁾	_		20 ⁽⁴⁾ 100 ⁽⁵⁾		20 ⁽⁴⁾ 100 ⁽⁵⁾	μA
V _{CMR}	Common Mode Range	GND +2.0	V _{CC}	GND +2.0	V _{CC}	GND +2.0	_	V _{CC}	GND +2.0	V _{CC}	V
Voffset	Differential Output Offset	-	±100	—	±100	—	±17	±100	_	±100	mV
LOS _{LVL}	LOS _{LVL} Level	V _{REF}	V _{CC}	V _{REF}	V _{CC}	V _{REF}	_	V _{CC}	V _{REF}	V _{CC}	V
V _{OL}	LOS Output Low Level ⁽²⁾		0.5	—	0.5	_	_	0.5	_	0.5	V
I _{OH}	LOS Output Leakage ⁽³⁾	—	100	—	100	—	_	100	_	100	uA
V _{OH}	D _{OUT} and /D _{OUT} HIGH Output	V _{CC} -1085	V _{CC} -880	V _{CC} -1025	V _{CC} -880	V _{CC} -1025	V _{CC} -955	V _{CC} -880	V _{CC} -1025	V _{CC} -880	mV
V _{OL}	D _{OUT} and /D _{OUT} LOW Output	V _{CC} –1830	V _{CC} -1555	V _{CC} -1810	V _{CC} -1620	V _{CC} -1810	V _{CC} -1705	V _{CC} -1620	V _{CC} -1810	V _{CC} -1620	mV
V _{REF}	Reference Supply	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.32	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V
I _{REF}	V _{REF} Output Current	-0.8	0.5	-0.8	0.5	-0.8	—	0.5	-0.8	0.5	mA
V _{IH}	/EN Input HIGH Voltage	2.0		2.0	_	2.0			2.0		V
V _{IL}	/EN Input LOW Voltage	—	0.8	—	0.8	_	—	0.8		0.8	V

4. $V_{IN} = 2.7V$

5. $V_{IN} = V_{CC}$ 6. $V_{IN} = 0.5V$

Notes:

1. No output load

2. I_{OL} = + 2mA 3. V_{OH} = 5.5V

AC ELECTRICAL CHARACTERISTICS

 $V_{CC} = +5V \pm 10\%$ or +3.3V $\pm 10\%$, $R_{I,OAD} = 50\Omega$ to $V_{CC} - 2V$

		T _A = −40°C		T _A = 0°C		T _A = +25°C			T _A = +85°C			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Conditions
PSRR	Power Supply ⁽¹⁾ Rejection Ratio	—		_	_		35		_		dB	Input referred, 55MHz
V _{ID}	Input Voltage Range	5	1800	5	1800	5	_	1800	5	1800	mV _{PP}	
V _{OD}	Differential Output Voltage Swing ⁽²⁾	_			_	_	700 300		_		mV mV	V _{ID} = 15mV _{PP} V _{ID} = 5mV _{PP}
t _{OFFL}	LOS Release Time ⁽³⁾ Minimum Input	_	0.5	_	0.5	_	0.1	0.5	_	0.5	μs	
t _{ONL}	LOS Assert Time ⁽³⁾	_	0.5		0.5	_	0.2	0.5	_	0.5	μs	
t _{OFFH}	LOS Release Time ⁽⁴⁾ Maximum Input	—	0.5	_	0.5	—	0.1	0.5	—	0.5	μs	
V _{SR}	LOS Sensitivity Range	5	50	5	50	5	_	50	5	50	mV _{PP}	2 ²³ -1 pattern
HYS	LOS Hysteresis	2	8	2	8	2	4.6	8	2	8	dB	2 ²³ -1 pattern
t _r , t _f	Output Rise/Fall Time	_	175 —		175 —	_	150 t _{rin} ,t _{fin}	175 —	_	175 —	ps	V _{ID} > 100mV _{PP} V _{ID} < 100mV _{PP}

Notes:

1. Input referred noise = RMS output noise/low frequency gain.

3. Input is a 200MHz square wave, $t_r < 300ps$, $8mV_{PP}$.

4. Input is a 200MHz square wave, $t_r < 300$ ps, 1.8V_{PP}.

2. Input is a 622MHz square wave.

DESIGN PROCEDURE

Output Termination

The SY88923V outputs must be terminated with a 50 Ω load to V_{CC} - 2V (or Thevenin equivalent).

Layout and PCB Design

Since the SY88923V is a high-frequency component, performance can largely be determined by board layout and design. A common problem with high-gain amplifiers is feedback from the large swing outputs to the input via the power supply.

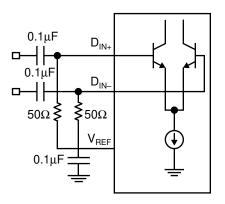
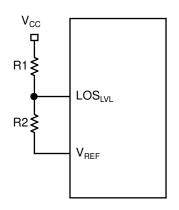
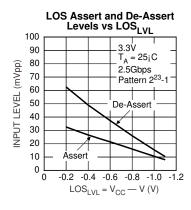
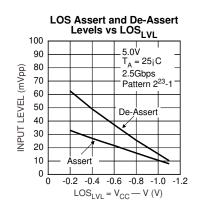
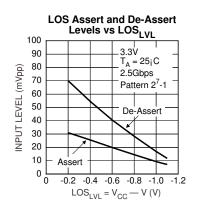
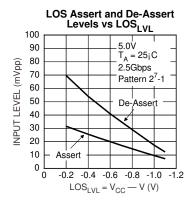


Figure 2. Differential Input Configuration

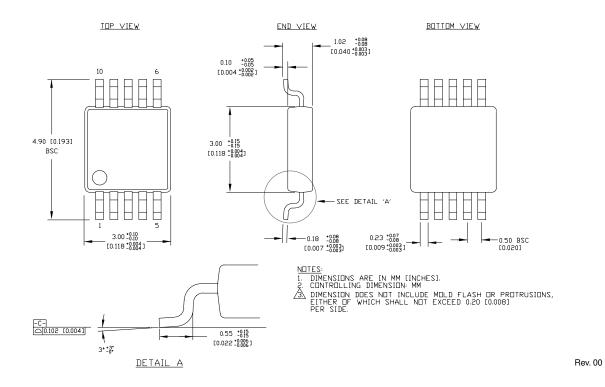
The SY88923V ground pin should be connected to the circuit board ground. Use multiple PCB vias close to the part to connect to ground. Avoid long, inductive runs which can degrade performance.


Figure 3. LOS_{LVL} Circuit


Notes:	R2 imes 1.32V				
$LOS_{LVL} = V_{CC} - 1.32V +$	R1 + R2				
$R1 + R2 \ge 2.6k\Omega$					

PERFORMANCE CURVE



10-PIN MSOP (K10-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.