

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FEATURES

- 3.3V and 5V power supply options
- Up to 2.5Gbps operation
- Low noise
- Chatter-fee signal detect (SD) generation
- Open collector TTL signal detect (SD) output
- **TTL EN input**
- Differential PECL inputs for data
- Single power supply
- Designed for use with Micrel-Synergy laser diode driver and controller
- Available in a tiny (3mm) 10-pin MSOP

APPLICATIONS

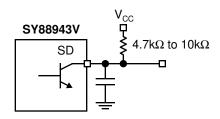
- 1.25Gbps and 2.5Gbps ethernet
- 531Mbps, 1062Mbps and 2.12Gbps Fibre Channel
- 622Mbps SONET
- Gigabit interface converter
- 2.5Gbps SDH/SONET
- 2.5Gbps proprietary links

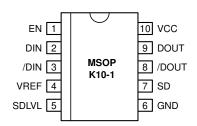
DESCRIPTION

The SY88943V limiting post amplifier with its high gain and wide bandwidth is ideal for use as a post amplifier in fiber-optic receivers with data rates up to 2.5Gbps. Signals as small as 5mVp-p can be amplified to drive devices with PECL inputs. The SY88943V generates a chatter-free Signal Detect (SD) open collector TTL output.

The SY88943V incorporates a programmable level detect function to identify when the input signal has been lost. The SD output will change from logic "HIGH" to logic "LOW" when input signal is smaller than the swing set by $\mathrm{SD}_{\mathrm{LVL}}$. This information can be fed back to the EN input of the device to maintain stability under loss of signal condition. Using $\mathrm{SD}_{\mathrm{LVL}}$ pin, the sensitivity of the level detection can be adjusted. The $\mathrm{SD}_{\mathrm{LVL}}$ voltage can be set by connecting a resistor divider between V_{CC} and $\mathrm{V}_{\mathrm{REF}}$ as shown in Figure 3. Figure 4, 5, 6, and 7 show the relationship between input level sensitivity and the voltage set on $\mathrm{SD}_{\mathrm{LVL}}$.

The SD output is a TTL open collector output that requires a pull-up resistor for proper operation, Figure 1.





Figure 1. SD Output with Desired Rise Time

BLOCK DIAGRAM

Micrel, Inc. SY88943V

PACKAGE/ORDERING INFORMATION

10-Pin MSOP (K10-1)

Ordering Information

Part Number	Package Type	Operating Range	Package Marking	Lead Finish	
SY88943VKC	K10-1	Commercial	943V	Sn-Pb	
SY88943VKCTR ⁽¹⁾	K10-1	Commercial	943V	Sn-Pb	
SY88943VKG	K10-1	Commercial	943V with Pb-Free bar-line indicator	Pb-Free NiPdAu	
SY88943VKGTR ⁽¹⁾	K10-1	Commercial	943V with Pb-Free bar-line indicator	Pb-Free NiPdAu	

Note:

1. Tape and Reel.

PIN NAMES

Pin	Туре	Function					
D _{IN}	Data Input	Data Input					
/D _{IN}	Data Input	Inverting Data Input					
SD _{LVL}	Input	SD Level Set					
EN	TTL Input	Output Enable (Active High)					
SD	TTL Output (Open Collector)	Signal Detect					
GND	Ground	Ground					
/D _{OUT}	PECL Output	Inverting Data Output					
D _{OUT}	PECL Output	Data Output					
V _{CC}	Power Supply	Positive Power Supply					
V _{REF}	Output	Reference Voltage Output for SD Level Set (see Fig. 3)					

GENERAL DESCRIPTION

General

The SY88943V is an integrated limiting amplifier intended for high-frequency fiber-optic applications. The circuit connects to typical transimpedance amplifiers found within a fiber-optics link. The linear signal output from a transimpedance amplifier can contain significant amounts of noise, and may vary in amplitude over time. The SY88943V limiting amplifier quantizes the signal and outputs a voltage-limited waveform.

The EN pin allows the user to disable the output signal without removing the input signal.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Value	Unit
V _{CC}	Power Supply Voltage	0 to +7.0	V
D _{IN} , /D _{IN}	Input Voltage	0 to V _{CC}	V
D _{OUT} , /D _{OUT}	Output Voltage (with 50Ω load)	V_{CC} –2.5 to V_{CC} +0.3	V
EN	Input Voltage	0 to V _{CC}	V
SD _{LVL}	Input Voltage	0 to V _{CC}	V
V _{REF}	Output Voltage	$V_{\rm CC}$ –2.0 to $V_{\rm CC}$	V
T _A	Operating Temperature Range	-40 to +85	°C
T _{store}	Storage Temperature Range	-55 to +125	°C

Note:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Micrel, Inc. SY88943V

DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = +5V \pm 10\%$, $R_{LOAD} = 50\Omega$ to $V_{CC} - 2V$

		T _A = -40°C		T _A = 0°C		T _A = +25°C			T _A = +85°C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit
I _{CC}	Power Supply 5V Current ⁽¹⁾ 3.3V		40 40	_	40 40	_	33 28	40 40		45 45	mA
I _{IL}	EN Input LOW Current	-0.3 ⁽⁶⁾	_	-0.3 ⁽⁶⁾	_	-0.3 ⁽⁶⁾	_	_	-0.3 ⁽⁶⁾	_	mA
I _{IH}	EN Input HIGH Current	_	20 ⁽⁴⁾ 100 ⁽⁵⁾	_	20 ⁽⁴⁾ 100 ⁽⁵⁾	_	_	20 ⁽⁴⁾ 100 ⁽⁵⁾	_	20 ⁽⁴⁾ 100 ⁽⁵⁾	μΑ
V _{CMR}	Common Mode Range	GND +2.0	V _{CC}	GND +2.0	V _{CC}	GND +2.0	_	V _{CC}	GND +2.0	V _{CC}	V
V _{offset}	Differential Output Offset	_	±100	_	±100	_	±17	±100	_	±100	mV
SD _{LVL}	SD _{LVL} Level	V_{REF}	V _{CC}	V_{REF}	V _{CC}	V_{REF}	_	V _{CC}	V_{REF}	V _{CC}	٧
V _{OL}	SD Output Low Level ⁽²⁾	_	0.5	_	0.5	_	_	0.5	_	0.5	٧
I _{OH}	SD Output Leakage ⁽³⁾	_	100	_	100	_		100	_	100	μΑ
V _{OH}	D _{OUT} and /D _{OUT} HIGH Output	V _{CC} -1085	V _{CC} -880	V _{CC} -1025	V _{CC} -880	V _{CC} -1025	V _{CC} -955	V _{CC} -880	V _{CC} -1025	V _{CC} -880	mV
V _{OL}	D _{OUT} and /D _{OUT} LOW Output	V _{CC} -1830	V _{CC} -1555	V _{CC} -1810	V _{CC} -1620	V _{CC} -1810	V _{CC} -1705	V _{CC} -1620	V _{CC} -1810	V _{CC} - 1620	mV
V _{REF}	Reference Supply	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.32	V _{CC} -1.26	V _{CC} -1.38	V _{CC} -1.26	V
I _{REF}	V _{REF} Output Current	-0.8	0.5	-0.8	0.5	-0.8	_	0.5	-0.8	0.5	mA
V _{IH}	EN Input HIGH Voltage	2.0	_	2.0	_	2.0	_	_	2.0		V
V _{IL}	EN Input LOW Voltage	_	0.8	_	0.8	_	_	0.8	_	0.8	V

Notes:

1. No output load

2. $I_{OL} = + 2mA$ 3. $V_{OH} = 5.5V$

4. $V_{IN} = 2.7V$

5. $V_{IN} = V_{CC}$ 6. $V_{IN} = 0.5V$

AC ELECTRICAL CHARACTERISTICS

 $\overline{V_{CC}}$ = +5V ±10%, R_{LOAD} = 50 Ω to V_{CC} -2V

		Ta = -40°C		TA = 0°C		TA = +25°C		Ta = +85°C				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Conditions
PSRR	Power Supply ⁽¹⁾ Rejection Ratio	1	1		1		35	1	l		dB	Input referred, 55MHz
V_{ID}	Input Voltage Range	5	1800	5	1800	5		1800	5	1800	mV_{PP}	
V _{OD}	Differential Output Voltage Swing ⁽²⁾						700 300				mV mV	$V_{ID} = 15mV_{PP}$ $V_{ID} = 5mV_{PP}$
t _{ONL}	SD Release Time ⁽³⁾ Minimum Input	_	0.5		0.5	_	0.2	0.5	_	0.5	μs	
t _{ONH}	SD Release Time ⁽⁴⁾ Maximum Input	1	0.5		0.5		0.2	0.5		0.5	μs	
t _{OFFL}	SD Assert Time ⁽³⁾	_	0.5		0.5	_	0.1	0.5	1	0.5	μs	
V_{SR}	SD Sensitivity Range	5	50	5	50	5		50	5	50	mV_{PP}	2 ²³ -1 pattern
HYS	SD Hysteresis	2	8	2	8	2	4.6	8	2	8	dB	2 ²³ -1 pattern
t _r , t _f	Output Rise/Fall Time	_	175 —	_	175 —	_ _	150 t _{rin} ,t _{fin}	175 —		175 —	ps	$V_{ID} > 100 \text{mV}_{PP}$ $V_{ID} < 100 \text{mV}_{PP}$

Notes:

- 1. Input referred noise = RMS output noise/low frequency gain.
- 2. Input is a 622MHz square wave.

- 3. Input is a 200MHz square wave, tr < 300ps, $8mV_{pp}$.
- 4. Input is a 200MHz square wave, tr < 300ps, $1.8V_{pp}$.

Micrel, Inc. SY88943V

DESIGN PROCEDURE

Output Termination

The SY88943V outputs must be terminated with a 50Ω load to V_{CC} –2V (or Thevenin equivalent).

Layout and PCB Design

Since the SY88943V is a high-frequency component, performance can be largely determined by the board layout and design. A common problem with high-gain amplifiers is the feedback from the large swing outputs to the input via the power supply.

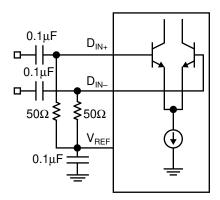


Figure 2. Differential Input Configuration

The SY88943V ground pin should be connected to the circuit board ground. Use multiple PCB vias close to the part to connect to ground. Avoid long, inductive runs which can degrade performance.

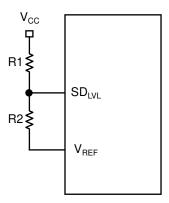


Figure 3. SD_{LVL} Circuit

$$\label{eq:solution} \begin{split} & \textbf{Notes:} \\ & \text{SD}_{\text{LVL}} = \text{V}_{\text{CC}} \ \ \text{-}1.32\text{V} + \\ & \text{R1} + \text{R2} \geq 2.6\text{k}\Omega \end{split}$$

PERFORMANCE CURVE

SD Assert and Deassert Levels vs SD_{LVL} 100 -3.3V _T_A = 25°C _2.5Gbps _Pattern 2²³-1 90 INPUT LEVEL (mVp-p) 80 70 60 50 40 30 20 10 0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 $SD_{LVL} = V_{CC} - V(V)$

Figure 4.

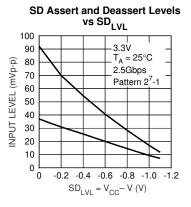


Figure 6.

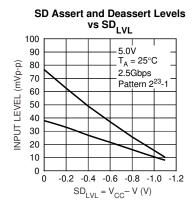


Figure 5.

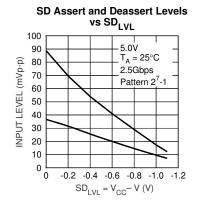
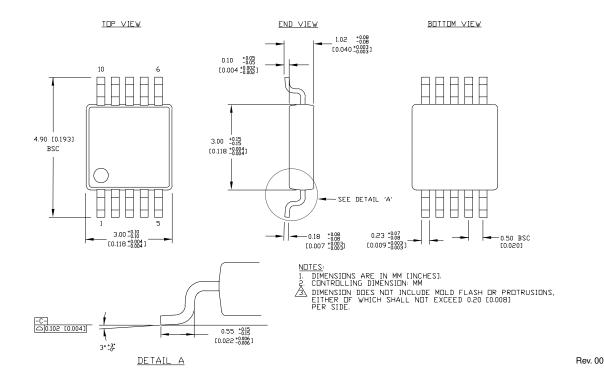



Figure 7.

Micrel, Inc. SY88943V

10 LEAD MSOP (K10-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.