

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.3V, 2.7Gbps SDH/SONET LASER DRIVER WITH AUTOMATIC POWER CONTROL

SY88952L

FEATURES

- Single 3.3V power supply
- Up to 2.7Gbps operation
- Rise/Fall times: < 75ps
- Independent programmable laser modulation and bias currents
- Bias current to 100mA and modulation current to 90mA
- Automatic average laser power control
- Bias and modulation current monitors
- Operating temperature range of -40°C to +85°C
- **Complies with ANSI, ITU, and Bellcore SDH/SONET** specifications
- Available in DIE form and 32-pin (5mm × 5mm) **EPAD-MLF™** package

APPLICATIONS

- OC-48 transceivers and transponders
- SONET/SDH transmission system
- Add drop mux

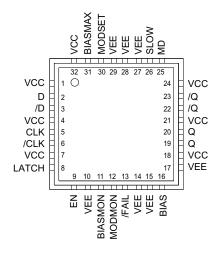
M9999-082205

- Metro area network
- 2.5Gbps optical transmitter
- **■** Fiber optical module

DESCRIPTION

SY88952L is a highly integrated and programmable laser driver for SONET/SDH application up to 2.7Gbps. The device accepts differential PECL or LVDS data and clock inputs. It provides programmable bias and modulation currents for driving a laser. The modulation output of SY88952L can be DC-coupled to drive the laser diode, providing a significant power saving over ACcoupled operation. A synchronizing TTL input latch can be used to reduce jitter if a clock signal is available. A TTL enable is also incorporated in the device. EN only enables/disables I_{MOD}. It does not enable/disable I_{BIAS}.

An automatic power controller (APC) is integrated into SY88952L to maintain a constant average optical output power over temperature and lifetime. The modulation current can be externally temperature compensated to minimize the variation of extinction ratio of the optical output.


Several safety features will enable an alarm function when the output signal is too high, or bias current is too

There are two alarm conditions:

- 1. /FAIL asserts when bias current loop goes to maximum of it's range. IBIAS and IMOD still flow under this condition.
- 2. /FAIL asserts when I_{BIASMAX} or I_{MODSET} are too high (implying I_{BIAS} or I_{MOD} will be too high). All currents will shut off under this condition.

Micrel, Inc. SY88952L

PACKAGE/ORDERING INFORMATION

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY88952LMI	MLF-32	Industrial	SY88952L	Sn-Pb
SY88952LMITR ⁽²⁾	MLF-32	Industrial	SY88952L	Sn-Pb
SY88952LMG	MLF-32	Industrial	SY88952L with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY88952LMGTR ⁽²⁾	MLF-32	Industrial	SY88952L with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

- 1. Dice are designed to operate from -40° C to $+85^{\circ}$ C, but are tested and guaranteed to $T_{A} = +25^{\circ}$ C only.
- 2. Tape and Reel.

32-Pin MLF™ (MLF-32)

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function		
16	BIAS	Bias Current Output (I _{BIAS}).		
11	BIASMON	Bias Current Monitor: Sinks current that is proportional to I_{BIAS} , (I_{BIAS} /40). An external current path must exist to V_{CC} .		
31	BIASMAX	A resistor (R _{BIASMAX}) connected to ground sets the maximum bias current. See "Typical Operating Characteristics" (I _{BIAS} vs. R _{BIASMAX}).		
26	SLOW	Connect a capacitor (C _{SLOW}) to ground to provide a slow-start.		
5, 6	CLK,/CLK	Differential Clock Input. 75K Ω pull-down on CLK, 75k Ω pull-up and 75k Ω pull-down on /CLK.		
2, 3	D, /D	Differential Data Input. 75K Ω pull-down on D, 75k Ω pull-up and 75k Ω pull-down on /D.		
9	EN	TTL Input with 75k Ω pull-up: Default HIGH for normal operation; LOW to disable modulation current.		
8	LATCH	TTL Input with 75k Ω pull-up: Default HIGH for latched (clocked) data; LOW for direct data.		
25	MD	Connect this pin to a monitor photodiode anode, a resistor (R_{APCSET}) and a capacitor (C_{APCSET}). This sets the desired average optical power.		
19, 20, 22, 23	Q, /Q	Differential Output: Modulation current output (I _{MOD}).		
12	MODMON	Modulation Current Monitor: Sinks current that is proportional to I_{MOD} , (I_{MOD} , 45). An external current path must exist to V_{CC} .		
30	MODSET	A resistor (R _{MODSET}) connected to ground sets the modulation current. See "Typical Operating Characteristics" (I _{MOD} vs. R _{MODSET}).		
13	/FAIL	TTL Open-Collector Output: Connect a $5k\Omega$ resistor to V_{CC} . Indicates APC failure when LOW.		
1, 4, 7, 18, 21, 24, 32	VCC	Positive Power Supply.		
10, 14, 15, 17, 27, 28, 29, EP	VEE	Device Ground: Ensure the exposed pad is also connected to ground.		

TRUTH TABLE(1)

D	/D	EN	OUT ⁽²⁾	/OUT
L	Η	Н	H	L
Н	L	Н	L	Н
Х	Х	L	Н	L

Note 1. L = LOW, H = HIGH, X = don't care.

Note 2. $H = I_{OUT} \le I_{MOD_OFF}$.

Absolute Maximum Ratings(1)

Supply Voltage (V _{CC})	+0V to +7.0V
Input Voltage (V _{IN})	+0V to V _{CC}
Output Current (I _{OUT})	100mA
Lead Temperature (soldering, 10 sec.).	300°C
Storage Temperature (T _S)	–65°C to +150°C

Operating Ratings^(2, 3)

Supply Voltage (V _{CC})	+3.0V to +3.6V
Ambient Temperature (T _A)	40°C to +85°C
Junction Temperature (T _J)	120°C
Package Thermal Resistance	
MLF™	
(θ_{IA}) still-air	34°C/W
(w/p) still-air	

DC ELECTRICAL CHARACTERISTICS

 $\rm V_{CC}$ = 3.0V to 3.6V; $\rm V_{EE}$ = GND; $\rm R_{LOAD}$ = $\rm 5\Omega$; $\rm T_{A}$ = $\rm -40^{\circ}C$ to +85°C

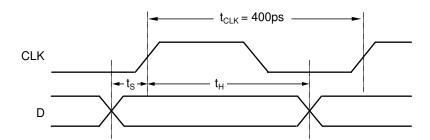
Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{CC}	Supply Current	Note 4			85	mA
I _{BIAS}	Bias Current Range	Note 5	1		100	mA
I _{MOD}	Modulation Current Range	Note 5	1		90	mA
I _{MOD_OFF}	Modulation Off Current	Note 6			750	μΑ
V_{ID}	Differential Input Voltage		200		1600	mV_PP
V _{ICMR}	Common Mode Range		V _{CC} -1.49		$V_{CC} - V_{ID}/4$	V
V_{IH}	TTL Input HIGH Voltage		2.0		V _{CC}	V
V_{IL}	TTL Input LOW Voltage				0.8	V
V_{OL}	/FAIL Output LOW Voltage	Note 6			0.5	V
I _{OH}	/FAIL Output Leakage Current	Note 7			100	μΑ

Notes:

- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 3. Devices are ESD sensitive. Handling precautions recommended.
- 4. Excluding actual $I_{\mbox{\footnotesize BIAS}}$ and $I_{\mbox{\footnotesize MOD}}$ output currents.
- 5. Voltage at Q, /Q must not drop below V_{CC} –1.5V. Voltage BIAS, MODMON and BIASMON must not drop below V_{CC} –2V.
- 6. EN = LOW.
- 7. $I_{OL} = +2mA$.
- 8. $V_{OH} = 3.6V$.

^{1.} Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

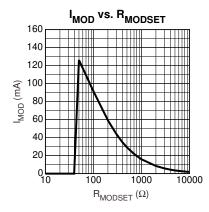
AC ELECTRICAL CHARACTERISTICS(9)

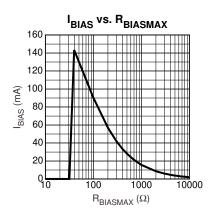

 $V_{CC} = 3.0 \text{V to } 3.6 \text{V}; V_{EE} = \text{GND}; T_{A} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C}; \text{typical values @V}_{CC} = 3.3 \text{V}, T_{A} = 25 ^{\circ}\text{C}, I_{MOD} = 40 \text{mA}, I_{BIAS} = 50 \text{mA}, R_{LOAD} = 5 \Omega$

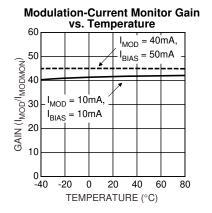
Symbol	Parameter	Condition	Min	Тур	Max	Units
CID	Maximum Consecutive Identical Digits		80			bits
PWD	Pulse Width Distortion	Note 10, 11			50	ps
t _S	Latch Set-Up Time		40			ps
t _H	Latch Hold Time		40			ps
t _r , t _f	Output Rise/Fall Time (20% to 80%)				75	ps

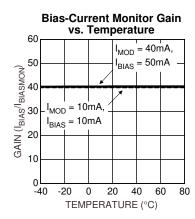
Notes:

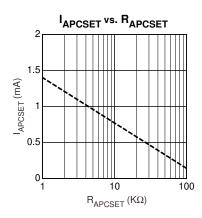
- 9. AC characteristics are guaranteed by design and characterization.
- 10. Measured with 622Mbps 0-1 pattern, latch = HIGH.
- 11. PWD = (Wider pulse narrower pulse) /2.

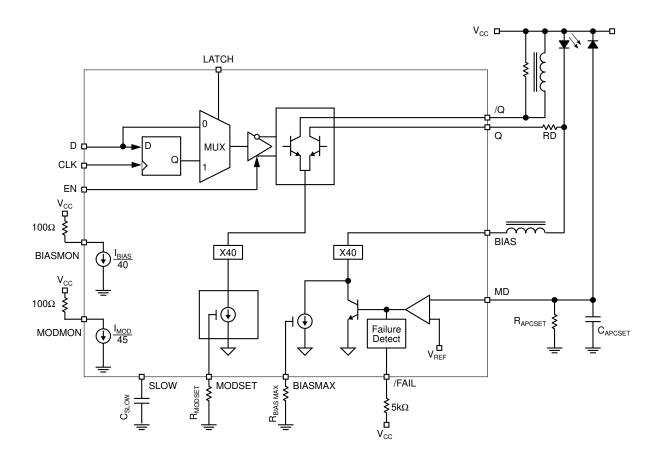

TIMING DIAGRAM

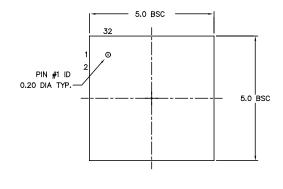



Setup/Hold Time Definition

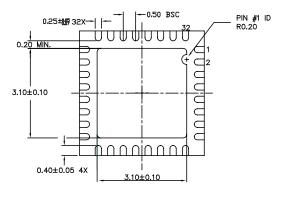

TYPICAL OPERATING CHARACTERISTICS(NOTE 1)


 V_{CC} = 3.3V, T_A = 25°C, unless otherwise stated.




Note 1. $\;\;$ I $_{\rm BIAS}$ and I $_{\rm MOD}$ must never exceed 100mA and 90mA, respectively.

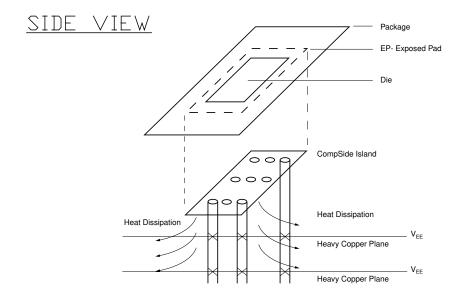
BLOCK DIAGRAM



SY88952L Micrel, Inc.

32 LEAD EPAD-Micro LEADFRAME™ (MLF-32)

TOP VIEW



ТПМ VIEW

NOTE

- ALL DIMENSIONS ARE IN MILLIMETERS.
 MAX. PACKAGE WARPAGE IS 0.05 mm.
 MAXIMUM ALLOWABE BURRS IS 0.076 mm IN ALL DIRECTIONS.
- PIN #1 ID ON TOP WILL BE LASER/INK MARKED.

PCB Thermal Consideration for 32-Pin MLF™ Package (Always solder to equivalent or PCB)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.