imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

NOT RECOMMENDED FOR NEW DESIGNS

3.3V/5V 1GHz DIFFERENTIAL PECL/ECL RECEIVER/BUFFER

Precision Edge[®] SY89206/216V

FEATURES

- f_{MAX} > 1.0GHz
- 3.3V and 5V power supply options
- 250ps propagation delay
- High bandwidth output transitions
- Internal 75kΩ input pull-down resistors
- SY89206V: 100k PECL/ECL compatible
- SY89216V: 10k PECL/ECL compatible
- Industrial temperature range: -40°C to +85°C
- Available in an ultra-small 8-pin (2mm × 2mm) MLF[™] package

BLOCK DIAGRAM

Precision Edge[®]

DESCRIPTION

The SY89206V and SY89216V are differential PECL/ ECL receiver/buffers in a space-saving ($2mm \times 2mm$) MLFTM package. The devices are functionally equivalent to the SY10/100EL16V, but feature a 70% smaller footprint.

The SY89206/216V provide a V_{BB} output for either single-ended use or as a DC bias for AC-coupling to the device. The V_{BB} pin should be used only as a bias for the SY89206/16V as its current sink/source capability is limited. Whenever used, the V_{BB} pin should be bypassed with a $0.01\mu F$ capacitor to $V_{CC}.$


Under open input conditions (pulled to $\rm V_{\rm EE}),$ internal input clamps will force the Q output LOW.

FUNCTIONAL CROSS REFERENCE

Micrel Part Number	PECL/ECL	Functional Cross
SY89206V	100k	SY100EL16V
SY89216V	10k	SY10EL16V

Precision Edge is a registered trademark of Micrel, Inc. *Micro*LeadFrame and MLF are trademarks of Amkor Technology, Inc.

PACKAGE/ORDERING INFORMATION

8-Pin MLF™ Ultra-Small Outline

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89206VMITR ⁽²⁾	MLF-8	Industrial	206	Sn-Pb
SY89216VMITR ⁽²⁾	MLF-8	Industrial	216	Sn-Pb
SY89206VMGTR ⁽²⁾	MLF-8	Industrial	206 with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY89216VMGTR ⁽²⁾	MLF-8	Industrial	216 with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_A = 25^{\circ}C$, DC electricals only.

2. Tape and Reel.

PIN DESCRIPTION

SY89206V

Pin Number	Pin Name	Туре	Pin Function
2, 3	D, /D	100k ECL Input	Differential PECL/ECL Input: The signal inputs include internal $75k\Omega$ pull- down resistors. If inputs are left open, Q output will default to LOW. See "Input Interface Applications" section for single-ended inputs.
7, 6	Q, /Q	100k ECL Output	Differential PECL/ECL Output: Q output defaults to LOW if D inputs left open. See <i>"Output Interface Applications"</i> section for recommendations on terminations.
8	VCC	Positive Power Supply	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors.
5	VEE Exposed Pad	Negative Power Supply	Negative Power Supply: VEE and exposed pad must be tied to most negative supply. For PECL/LVPECL connect to ground.
4	VBB	Reference Voltage Output	Bias Voltage: V_{CC} -1.3V. Used as reference voltage when AC coupling to the D, /D inputs. Max sink/source is ±0.5mA.
1	NC		No connection.

SY89216V

Pin Number	Pin Name	Туре	Pin Function
2, 3	D, /D	10k ECL Input	Differential PECL/ECL Input: The signal inputs include internal 75k Ω pull- down resistors. If inputs are left open, Q output will default to LOW. See "Input Interface Applications" section for single-ended inputs.
7, 6	Q, /Q	10k ECL Output	Differential PECL/ECL Output: O output defaults to LOW if D inputs left open. See <i>"Output Interface Applications"</i> section for recommendations on terminations.
8	VCC	Positive Power Supply	Positive Power Supply: Bypass with $0.1 \mu F/\!/0.01 \mu F$ low ESR capacitors.
5	VEE Exposed Pad	Negative Power Supply	Negative Power Supply: VEE and exposed pad must be tied to most negative supply. For PECL/LVPECL connect to ground.
4	VBB	Reference Voltage Output	Bias Voltage: V_{CC} -1.3V. Used as reference voltage when AC coupling to the D, /D inputs. Max sink/source is ±0.5mA.
1	NC		No connection.

Absolute Maximum Ratings^(Note 1)

Power Supply Voltage (V_{CC}) –0.5V to $6.0V$
ECL Input Voltage (V _{IN})+0V to V _{CC} +0.5V
Voltage Applied to Output at HIGH State
(V_{OUT}) –0.5V to V_{CC}
Current Applied to Output at LOW State
(I _{OUT}) Twice the Rated I _{OL} mA
Lead Temperature (soldering, 10 sec.) 220°C
Storage Temperature (T_S)–65°C to +150°C

Operating Ratings^(Note 2)

Power Supply Voltage V _{CC} -V _{EE} 3.3V ±10	% or 5V ±10%
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance Note 3	
MLF™ (θ,ιΔ)	
MLF [™] (θ _{JA}) Still-Air	93°C/W
500lfpm	87°C/W
MLF™ (ψ _{JB}),	

DC ELECTRICAL CHARACTERISTICS

 $T_A = -40^{\circ}C$ to +85°C; unless noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{EE}	Power Supply	$\begin{array}{c} V_{CC}-V_{EE} \\ V_{CC}-V_{EE} \end{array}$	3.0 4.5	3.3 5.0	3.6 5.5	V V
I _{EE}	Power Supply Current	SY89206V SY89216V		21 18	26 22	mA mA
I _{IH}	Input HIGH Current				150	μA
V _{BB}	Output Reference Voltage	SY89206V SY89216V	-1.38 -1.43		-1.26 -1.19	V V

SY89206V (100K ECL) DC ELECTRICAL CHARACTERISTICS

$V_{CC} = +3.3V$	V_{CC} = +3.3V ±10% or +5V ±10% and V_{EE} = 0V; V_{CC} = 0V and V_{EE} = -3.3V ±10% or -5V ±10%; T_A = -40°C to +85°C unless otherwise noted.						
Symbol	Parameter	Condition	Min	Тур	Max	Units	
V _{OH}	Output HIGH Voltage	Note 4, 5	V _{CC} -1.085	—	V _{CC} -0.880	V	
V _{OL}	Output LOW Voltage	Note 4, 5	V _{CC} -1.830	_	V _{CC} -1.555	V	
V _{IH}	Input HIGH Voltage		V _{CC} -1.165	_	V _{CC} -0.880	V	
V _{IL}	Input LOW Voltage		V _{CC} -1.810	_	V _{CC} -1.475	V	
V _{PP}	Minimum Input Swing		150	—	—	mV	
I _{IH}	Input HIGH Current		_	_	150	μA	
IIL	Input LOW Current		0.5	—	—	μA	

SY89216V (10K ECL) DC ELECTRICAL CHARACTERISTICS

			un ul na un atra al
$V_{00} = \pm 3.3V \pm 10\% 00 \pm 5V \pm 10\% 200 V_{}$	$= 0V V_{00} = 0V 200 V_{} = -3.3V \pm 10\%$	% or –5V ±10%; $T_A = -40^{\circ}C$ to +85°C unless othe	envise noiea

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage	Note 4, Input Card	V _{CC} -1.080	_	V _{CC} -0.720	V
V _{OL}	Output LOW Voltage	Note 4, Input Card	V _{CC} -1.950	_	V _{CC} -1.595	V
V _{IH}	Input HIGH Voltage		V _{CC} -1.230	—	V _{CC} -0.720	V
V _{IL}	Input LOW Voltage		V _{CC} -1.950	_	V _{CC} -1.445	V
V _{PP}	Minimum Input Swing		150	_	—	mV
I _{IH}	Input HIGH Current		—		150	μA
I _{IL}	Input LOW Current		0.5	_	—	μA

AC ELECTRICAL CHARACTERISTICS

 V_{CC} = +3.3V ±10% or +5V ±10% and V_{EE} = 0V; V_{CC} = 0V and V_{EE} = -3.3V ±10% or -5V ±10%; T_A = -40°C to +85°C unless otherwise noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
f _{MAX}	Maximum Frequency	$V_{OUT} \ge 400 \text{mV}$	1.0			GHz
t _{PLH}	Propagation Delay	D (Differential)	125	280	375	ns
t _{PHL}		D (Single ended)	75	280	425	ns
t _{SKEW}	Duty Cycle Skew	Note 6, EL/6V no space – 40°C		5	20	ps
V _{PP}	Minimum Input Swing	Note 7	150			mV
V _{CMR}	Common Mode Range	Note 8	V _{CC} -1.3		V _{CC} -0.4	V
t _r ,t _f	Output Rise/Fall Times (20% to 80%)		100	225	350	ps

Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

Note 3. Package Thermal Resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB.

Note 4. Output loaded with 50Ω to V_{CC}-2V.

Note 5. $V_{IN} = V_{IL}$ (min) or V_{IH} (max)

Note 6. Duty cycle skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.

Note 7. Minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈40V/V.

Note 8. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between V_{PP} min. and 1V. The lower end of the CMR range varies 1:1 with V_{EE} . The numbers in the specification table assume a nominal $V_{EE} = -3.3V$. Note for PECL operation, the V_{CMR} (min) will be fixed at $3.3V - |V_{CMR}$ (min)|.

INPUT INTERFACE APPLICATIONS

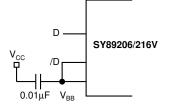
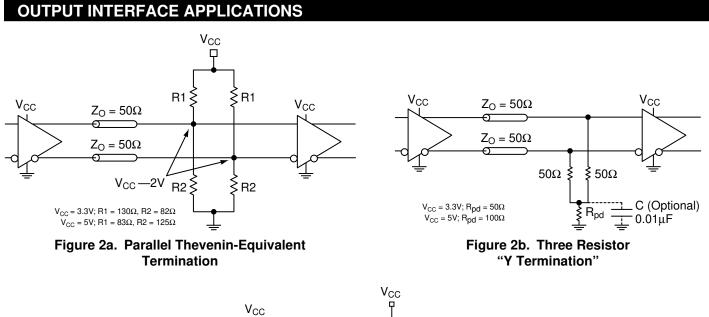
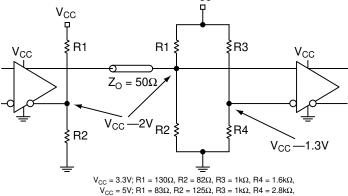
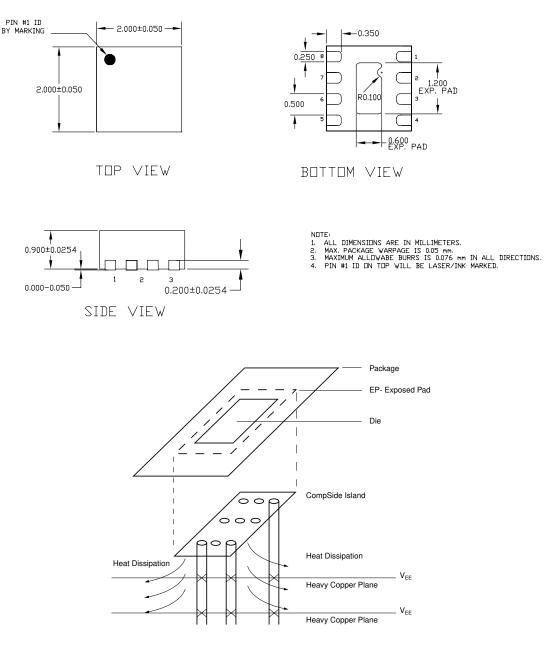




Figure 1. Single-Ended LVPECL Input (Terminating Unused Input)



RELATED PRODUCT AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY89306/316V	3.3V/5V 2.5GHz PECL/ECL Differential Receiver/Buffer	www.micrel.com/product-info/products/sy89306-316v.shtml
SY89223L	3.3V Dual Differential LVPECL-to-LVTTL Translator	www.micrel.com/product-info/products/sy89223l.shtml
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

8 LEAD ULTRA-SMALL EPAD-MicroLeadFrame[™] (MLF-8)

PCB Thermal Consideration for 8-Pin MLF™ Package

Package Notes:

- **Note 1.** Package meets level two qualification.
- Note 2. All parts are dry-packed before shipment.
- Note 3. Exposed pads must be soldered to the most negative supply plane, equivalent to V_{EE} , for
 - proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.