

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

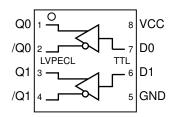
3.3V DUAL TTL-to-DIFFERENTIAL PECL TRANSLATOR

Precision Edge[®] SY89222L

FEATURES

- 3.3V power supply
- 300ps typical propagation delay
- <100ps output-to-output skew
- **■** Differential LVPECL outputs
- PNP TTL inputs for minimal loading
- **■** Flow-through pinouts
- Available in ultra-small 8-pin MLF™ (2mm x 2mm) package

DESCRIPTION


The SY89222L is a dual TTL-to-differential LVPECL translator with a +3.3V power supply. Because LVPECL (Positive ECL) levels are used, only +3.3V and ground are required. The SY89222L is functionally equivalent to the SY100ELT22L but in an ultra-small 8-lead MLF™ package that features a 70% smaller footprint. The low skew, dual gate design of the SY89222L makes it ideal for applications that require the translation of a clock and a data signal.

FUNCTIONAL CROSS REFERENCE

Micrel Part Number		Functional Cross
2×2 MLF™ PECL		8-SOIC
SY89222L	100K	SY100ELT22

Precision Edge is a registered trademark of Micrel, Inc. MLF and *Micro*LeadFrame are trademarks of Amkor Technology, Inc.

PACKAGE/ORDERING INFORMATION

TOP VIEW 8-Pin MLF™ Ultra-Small Outline (2mm × 2mm)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89222LMITR ⁽²⁾	MLF-8	Industrial	222	Sn-Pb
SY89222LMGTR ⁽²⁾	MLF-8	Industrial	222 with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC electricals only.
- 2. Tape and Reel.

PIN DESCRIPTION

Pin Number	Pin Name	Туре	Pin Function
7, 6	D0, D1	TTL Input	Single-ended TTL inputs. If left open, defaults to HIGH.
1, 2, 3, 4	Q0, /Q0, Q1, /Q1	100k LVPECL Output	Differential LVPECL Outputs: See "Output Interface Applications" section for recommendations on terminations. Q defaults to HIGH (/Q defaults to LOW) when D input is left open.
8	VCC	Power	Positive Power Supply: Bypass with 0.1μF//0.01μF low ESR capacitors.
5	GND, Exposed Pad	Ground	GND and Exposed pad must be tied to ground plane.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	–0.5V to +4.0V
Input Voltage (V _{IN})	–0.5V to V _{CC}
LVPECL Output Current (I _{OUT})	
Continuous	50mA
Surge	100mA
Input Current	
Source or sink current on D0, D1	±50mA
Lead Temperature (soldering, 10 sec.)	+220°C
Storage Temperature (T _S)	–65°C to +150°C

Operating Ratings(Note 2)

Supply Voltage (V _{CC})	3.0V to 3.8V
Ambient Temperature (T _A)	–40°C to +85°C
Package Thermal Resistance, (Note 3)	
$MLF^{TM}\ (\theta_{JA})$ Still-Air	
Still-Air	93°C/W
500lfpm	
$MLF^{\mathsf{TM}}\ (\Psi_{JB})$	
MLF™ (Ψ _{JB}) Junction-to-Board	56°C/W

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{CC}	Power Supply Current	Max V _{CC} , no load	1	1	25	mA

TTL DC ELECTRICAL CHARACTERISTICS(Note 4)

 V_{CC} = +3.0V to +3.8V; T_A = -40°C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IH}	Input HIGH Voltage		2.0		_	٧
V _{IL}	Input LOW Voltage				0.8	٧
I _{IH}	Input HIGH Current	V _{IN} = 2.7V	_	_	20	μΑ
		$V_{IN} = V_{CC}$	_	-	100	μΑ
I _{IL}	Input LOW Current	$V_{IN} = 0.5V$	_		-0.2	mA
V_{IK}	Input Clamp Voltage	$I_{IN} = -18mA$	_	_	-1.2	V

PECL DC ELECTRICAL CHARACTERISTICS(Note 5)

 V_{CC} = +3.0V to +3.8V and V_{EE} = 0V; T_A = -40°C to +85°C unless otherwise noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage	Note 1	V _{CC} -1.080	_	V _{CC} -0.880	V
V_{OL}	Output LOW Voltage	Note 1	V _{CC} -1.830	-	V _{CC} -1.620	V

- Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.
- Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Note 3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB.
- Note 4. Parametric values specified at: 3 volt power supply range +3.0V to +3.8V.
- Note 5. Output loaded with 50Ω to V_{CC} -2V.

AC ELECTRICAL CHARACTERISTICS (Note 6)

 V_{CC} = +3.0V to +3.8V; T_A = -40°C to +85°C, R_L = 50 Ω to V_{CC} -2V, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
t _{pd}	Propagation Delay		100	_	600	ps
t _r / t _f	Output Rise/Fall Time 20% to 80%		200	_	500	ps
t _{skew}	Within-Device Skew	Notes 6, 7	_	_	100	ps
t _{skpp}	Part-to-Part Skew	Note 6	_	_	500	ps
T _{jitter}	Cycle-to-cycle	Note 8			1	ps _{RMS}

- **Note 6.** AC parameters are guaranteed by design and characterization.
- Note 7. Same transition, common V_{CC} levels.
- Note 8. Cycle-to-cycle jitter definition: the variation in the period between adjacent cycles over a random sample of adjacent cycle pairs: $T_{\text{iitter}_CC} = T_n T_{\text{nt}}$, where T is the time between the rising edges of the output cycle.

LVPECL OUTPUT INTERFACE APPLICATIONS

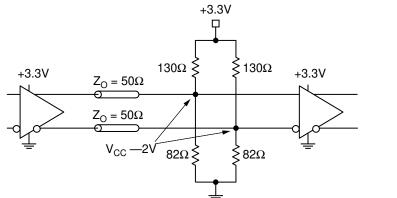


Figure 1a. Parallel Thevenin-Equivalent Termination

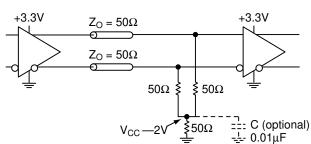


Figure 1b. Three Resistor "Y Termination"

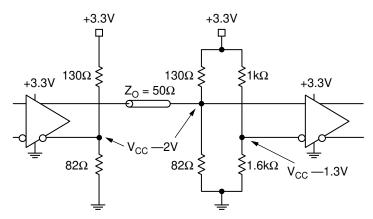
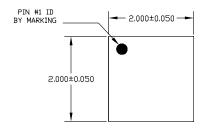
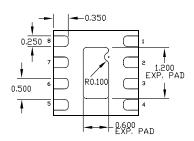
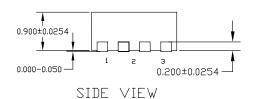
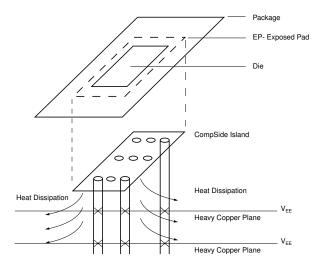




Figure 1c. Terminating Unused I/O


LEAD ULTRA-SMALL EPAD-*Micro*LeadFrame™ (MLF-8)

TOP VIEW



BOTTOM VIEW

NOTE:

- ALL DIMENSIONS ARE IN MILLIMETERS.
 MAX. PACKAGE WARPAGE IS 0.05 mm.
 MAXIMUM ALLUWABE BURRS IS 0.076 mm IN ALL DIRECTIONS.
 PIN #1 ID IN TOP WILL BE LASER/INK MARKED.

PCB Thermal Consideration for 8-Pin MLF™ Package

Package Notes:

- Note 1. Package meets Level 2 qualification.
- All parts are dry-packaged before shipment.
- Note 3. Exposed pads must be soldered to a ground plane, of the same potential as the GND plane for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.