

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

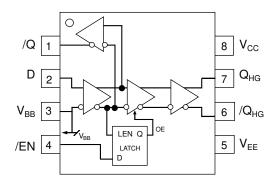
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ENHANCED DIFFERENTIAL RECEIVER

Precision Edge[®] SY89250V


FEATURES

- 3.3V and 5V power supply options
- 250ps propagation delay
- Very high voltage gain
- Ideal for Pulse Amplifier and Limiting Amplifier applications
- Data synchronous Enable/Disable (/EN) on Q_{HG} and /Q_{HG} provides for complete glitchless gating of the outputs
- Ideal for gating timing signals
- Complete solution for high quality, high frequency crystal oscillator applications
- Available in an ultra-small 8-pin (2mm × 2mm) MLF™ package

APPLICATIONS

■ Oscillator modules

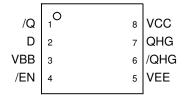
BLOCK DIAGRAM

Precision Edge®

DESCRIPTION

The SY89250V is a differential PECL/ECL receiver/buffer in a space saving (2mm \times 2mm) MLFTM package. The device is functionally equivalent to the SY100EL16VC, but features a 70% smaller footprint. It provides a V $_{\rm BB}$ output for either single-ended application or as a DC bias for AC-coupling to the device.

The SY89250V provides an /EN input which is synchronized with the data input (D) signal in a way that provides glitchless gating of the Q_{HG} and /Q_{HG} outputs. When the /EN signal is LOW, the input is passed to the outputs and the data output equals the data input. When the data input is HIGH and the /EN goes HIGH, it will force the QHG LOW and the /QHG HIGH on the next negative transition of the data input. If the data input is LOW when the /EN goes HIGH, the next data transition to a HIGH is ignored and QHG remains LOW and /Q_{HG} remains HIGH. The next positive transition of the data input is not passed on to the data outputs under these conditions. The Q_{HG} and $/Q_{HG}$ outputs remain in their disabled state as long as the /EN input is held HIGH. The /EN input has no influence on the /Q output and the data input is passed on (inverted) to this output whether /EN is HIGH or LOW. This configuration is ideal for crystal oscillator applications, where the oscillator can be free running and gated on and off synchronously without adding extra counts to the output.


All support documentation can be found on Micrel's web site at www.micrel.com.

FUNCTIONAL CROSS REFERENCE

Micrel Part Number	PECL/ECL	Functional Cross
SY89250V	100k	SY100EL16VC

Precision Edge is a registered trademark of Micrel, Inc. MicroLeadFrame and MLF are trademarks of Amkor Technology, Inc.

PACKAGE/ORDERING INFORMATION

8-Pin MLF™ (Ultra-Small Outline)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89250VMI	MLF-8	Industrial	250	Sn-Pb
SY89250VMITR ⁽²⁾	MLF-8	Industrial	250	Sn-Pb
SY89250VMG	MLF-8	Industrial	250 with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY89250VMGTR ⁽²⁾	MLF-8	Industrial	250 with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25$ °C, DC electricals only.
- 2. Tape and Reel.

PIN DESCRIPTION

Pin Number	Pin Name	Туре	Pin Function	
1	/Q	100k	Single-Ended PECL/ECL Feedback Output.	
2	D	100k	Single-Ended PECL/ECL Input: The signal input includes an internal $75k\Omega$ pull-down ECL Input resistor. If input is left open, Q output will default to LOW. See "Input Interface Applications" section for single-ended inputs.	
3	VBB	Reference Output Voltage	Bias Voltage: V_{CC} -1.3V. Used as reference voltage when AC-coupling to the D input. Max sink/source is ± 0.5 mA.	
4	/EN	Enable Input	/EN Input which is synchronized with data input (D) signal in a way that provides glitchless gating of $Q_{\mbox{\scriptsize HG}}$ and $/Q_{\mbox{\scriptsize HG}}$ outputs. Includes internal $75k\Omega$ pull-down resistor. Default is LOW	
5	VEE, Exposed Pad	Negative Power Supply	Negative Power Supply: V _{EE} and exposed pad must be tied to most negative supply. For PECL/LVPECL connect to ground.	
6, 7	/QHG, QHG	100k ECL Output	Differential PECL/ECL Output: Defaults to LOW if D inputs left open. See "Output Interface Applications" section for recommendations on terminations.	
8	VCC	Positive Power Supply	Positive Power Supply: Bypass with 0.1μF//0.01μF low ESR capacitors.	

TRUTH TABLE

/EN	Q _{HG} Output		
0	Data		
1	Logic Low		

Absolute Maximum Ratings⁽¹⁾

Power Supply Voltage (V _{CC})	-0.5V to +6.0V
ECL Input Voltage (V _{IN})0	V to V _{CC} +0.5V
Voltage Applied to Output at HIGH State	
(V _{OUT})	–0.5V to V _{CC}
Current Applied to Output at LOW State	
(I _{OUT}) Twice th	ne rated I _{OL} mA
Lead Temperature (soldering, 20 sec.)	260°C
Storage Temperature (T _S)	65°C to +150°C

Operating Ratings⁽²⁾

Power Supply Voltage V _{CC} -V _{EE}	$3.3V \pm 10\%$ or $5V \pm 10\%$
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance, (3)	
MLF TM (θ _{JA}) Still-Air	
Still-Air	93°C/W
$MLF^{\mathsf{TM}}\ (\psi_{JB}),\$	60°C/W

DC ELECTRICAL CHARACTERISTICS

 $T_A = -40$ °C to +85°C; unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{EE}	Power Supply	V _{CC} -V _{EE} V _{CC} -V _{EE}	3.0 4.5	3.3 5.0	3.6 5.5	V V
I _{EE}	Power Supply Current				46	mA
I _{IH}	Input HIGH Current				150	μΑ
V_{BB}	Output Reference Voltage		V _{CC} -1.38	V _{CC} -1.32	V _{CC} -1.26	V

DC ELECTRICAL CHARACTERISTICS

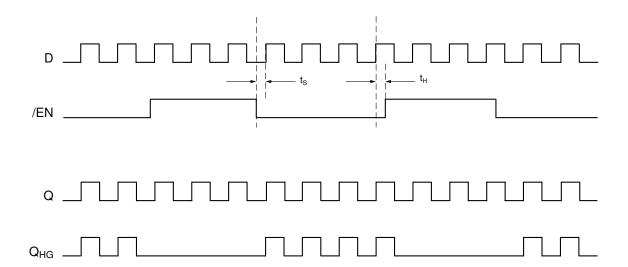
 $V_{CC} = +3.3V \pm 10\%$ or $+5V \pm 10\%$ and $V_{EE} = 0V$; $V_{CC} = 0V$ and $V_{EE} = -3.3V \pm 10\%$ or $-5V \pm 10\%$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$; unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{OH}	Output HIGH Voltage	Note 4	V _{CC} -1.085		V _{CC} -0.880	V
V_{OL}	Output LOW Voltage	Note 4	V _{CC} -1.830		V _{CC} -1.555	V
V_{IH}	Input HIGH Voltage		V _{CC} -1.165		V _{CC} -0.880	V
$V_{\rm IL}$	Input LOW Voltage		V _{CC} -1.810		V _{CC} -1.475	V
V_{BB}	Output Reference Voltage		V _{CC} -1.38		V _{CC} -1.26	V
V_{PP}	Minimum Input Swing		150			mV
I _{IH}	Input HIGH Current				150	μΑ
I _{IL}	Input LOW Current		0.5			μΑ

Notes:

- Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.
- 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- 3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB.
- 4. Output loaded with 50 $\!\Omega$ to V $_{CC}$ –2V.

AC ELECTRICAL CHARACTERISTICS


 $V_{EE} = V_{EE}(min)$ to $V_{EE}(max)$; $V_{CC} = GND$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$; unless otherwise stated.

Symbol	Parameter		Condition	Min	Тур	Max	Units
t _{pd}	Propagation Delay to: Q, /Q Output QHG, /QHG Output	D (Diff) D (SE) D (Diff) D (SE)				380 430 730 780	ps ps ps ps
t _S	Set-Up Time	/EN			150	700	ps
t _H	Hold Time	/EN			150		ps
t _{SKEW}	Duty Cycle Skew	(Diff)	Note 5		5	20	ps
V_{PP}	Minimum Input Swing	/EN	Note 6	150			mV
V _{CMR}	Common Mode Range	/EN	Note 7	-1.3		-0.4	V
t _r , t _f	Output Q Rise/Fall Times (20% to 80%)		At full output swing	100	225	350	ps

Notes:

- 5. Duty cycle skew is the difference between a $t_{\mbox{\scriptsize pd}}$ propagation delay through a device.
- 6. Minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40 to Q, /Q outputs and a DC gain of ≈ 200 or higher to /Q_{HG}, Q_{HG} outputs.
- 7. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $V_{PP}(min)$ and 1V. The lower end of the CMR range varies 1:1 with V_{EE} . The numbers in the spec table assume a nominal $V_{EE} = -3.3V$. Note for PECL operation, the $V_{CMR}(min)$ will be fixed at $3.3V |V_{CMR}(min)|$.

TIMING DIAGRAM

OUTPUT INTERFACE APPLICATIONS

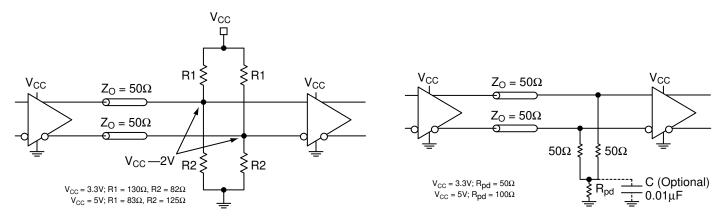


Figure 1a. Parallel Thevenin-Equivalent Termination

Figure 1b. Three Resistor "Y Termination"

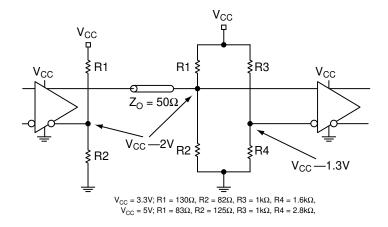
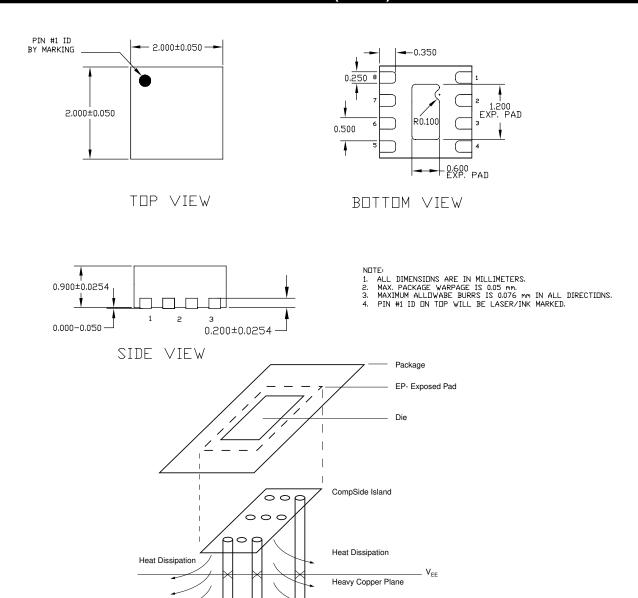



Figure 1c. Terminating Unused I/O

RELATED PRODUCT AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY89306/316V	3.3V/5V 2.5GHz PECL/ECL Differential Receiver/Buffer	www.micrel.com/product-info/products/sy89306-316v.shtml
SY89206/216V	3.3V/5V 1GHz PECL/ECL Differential Receiver/Buffer	www.micrel.com/product-info/products/sy89206-216v.shtml
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

8 LEAD ULTRA-SMALL EPAD-MicroLeadFrame™ (MLF-8)

PCB Thermal Consideration for 8-Pin MLF™ Package

Heavy Copper Plane

Package Notes:

- 1. Package meets Level 2 qualification.
- 2. All parts are dry-packaged before shipment.
- 3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2005 Micrel, Incorporated.