

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SY89251V

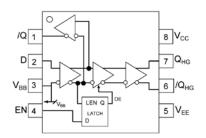
Enhanced Differential Receiver

General Description

The SY89251V is a differential PECL/ECL receiver/buffer in a space saving (2mm x 2mm) DFN package. The device is functionally equivalent to the SY100EL16VC, except for an active HIGH enable pin and a 70% smaller footprint. It is also equivalent to the SY89250V, except for an active HIGH enable pin. It provides a $V_{\mbox{\footnotesize{BB}}}$ output for either single-ended application or as a DC bias for AC-coupling to the device.

The SY89251V provides an EN input which is synchronized with the data input (D) signal in a way that provides glitchless gating of the Q_{HG} and /Q_{HG} outputs. When the EN signal is HIGH, the input is passed to the outputs and the data output equals the data input. When the data input is HIGH and the EN goes LOW, it will force the QHG LOW and the /QHG HIGH on the next negative transition of the data input. If the data input is LOW when the EN goes LOW, the next data transition to a HIGH is ignored and QHG remains LOW and /QHG remains HIGH. The next positive transition of the data input is not passed on to the data outputs under these conditions. The QHG and /QHG outputs remain in their disabled state as long as the EN input is held LOW. The EN input has no influence on the /Q output and the data input is passed on (inverted) to this output whether EN is HIGH or LOW. This configuration is ideal for crystal oscillator applications, where the oscillator can be free running and gated on and off synchronously without adding extra counts to the output.

Datasheets and support documentation can be found on Micrel's web site at: www.micrel.com.


Features

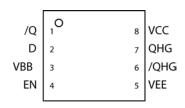
- 3.3V and 5V power supply options
- 250ps propagation delay
- · Very high voltage gain
- Ideal for pulse amplifier and limiting amplifier applications
- Data synchronous enable/disable (EN) on Q_{HG} and /Q_{HG} provides for complete glitchless gating of the outputs
- Ideal for gating timing signals
- Complete solution for high quality, high frequency crystal oscillator applications
- Available in an ultra-small 8-pin (2mm x 2mm) DFN package

Applications

· Oscillator modules

Block Diagram

Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com


Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89251VMI	DFN-8	Industrial	251	Sn-Pb
SY89251VMITR(2)	DFN-8	Industrial	251	Sn-Pb
SY89251VMG	DFN-8	Industrial	251 with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY89251VMGTR(2)	DFN-8	Industrial	251 with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

- 1. Contact factory for die availability. Dice are guaranteed at $T_A = 25$ °C, DC electricals only.
- 2. Tape and Reel.

Pin Configuration

8-Pin DFN (Ultra-Small Outline)

Truth Table

EN	QHG Output	
0	Logic Low	
1	Data	

Pin Description

Pin Number	Pin Name	Туре	Pin Function
1	/Q	100k	Single-Ended PECL/ECL Feedback Output.
2	D	100k	Single-Ended PECL/ECL Input: The signal input includes an internal 75k Ω pull-down resistor. If input is left open, Q output will default to LOW.
3	VBB	Reference Output Voltage	Bias Voltage: V_{CC} -1.3V. Used as reference voltage when AC-coupling to the D input. Max sink/source current is ± 0.5 mA.
4	EN	Enable Input	EN Input which is synchronized with data input (D) signal in a way that provides glitchless gating of Q_{HG} and $/Q_{HG}$ outputs. Includes internal 75k Ω pull-up resistor. Default is HIGH.
5	VEE Exposed Pad	Negative Power Supply	Negative Power Supply: V _{EE} and exposed pad must be tied to most negative supply. For PECL/LVPECL connect to ground.
6, 7	/QHG, QHG	100k	Differential PECL/ECL Output: QHG defaults to LOW and /QHG defaults to HIGH if D input is left open. See "Output Interface Applications" section for recommendations on terminations.
8	VCC	Positive Power Supply	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors as close to VCC pin as possible.

Absolute Maximum Ratings⁽¹⁾

Power Supply Voltage (V _{CC})	0.5V to +6.0V
ECL Input Voltage (V _{IN})	0V to V_{CC} +0.5V
Voltage Applied to Output at HIGH State	
(V _{OUT})	$-0.5V$ to V_{CC}
Output Current (I _{OUT})	
Continuous	50mA
Surge	100mA
Lead Temperature (soldering, 20 sec.)	
Storage Temperature (T _S)	

Operating Ratings⁽²⁾

Power Supply Voltage V _{CC} -V _{EE}	3.3V ±10% or 5V ±10%
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance,(3)	
DFN (θ _{JA}) Still-Air ····································	93°C/W
DFN (Ψ _{JB})	60°C/W

DC Electrical Characteristics⁽⁴⁾

 $T_A = -40$ °C to +85°C, unless noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{EE}	Power Supply	V _{CC} -V _{EE}	3.0	3.3	3.6	V
		V _{CC} -V _{EE}	4.5	5.0	5.5	V
I _{EE}	Power Supply Current				46	mA
I _{IL}	Input Low Current	EN	-150			μΑ
V_{BB}	Output Reference Voltage		V _{CC} -1.38	V _{CC} -1.32	V _{CC} -1.26	٧

DC Electrical Characteristics⁽⁴⁾

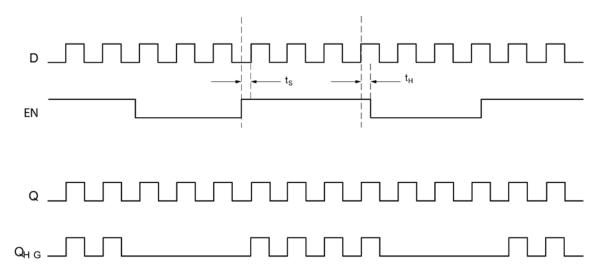
 $Vcc = +3.3V \pm 10\%$ or $+5V \pm 10\%$ and Vee = 0V; Vcc = 0V and $Vee = -3.3V \pm 10\%$ or $-5V \pm 10\%$; $TA = -40^{\circ}C$ to $+85^{\circ}C$; unless noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage	Note 4	V _{CC} -1.085		V _{CC} -0.880	V
V _{OL}	Output LOW Voltage	Note 4	V _{CC} -1.830		V _{CC} -1.555	V
V _{IH}	Input HIGH Voltage		V _{CC} -1.165		V _{CC} -0.880	V
V _{IL}	Input LOW Voltage		V _{CC} -1.810		V _{CC} -1.475	V
V _{PP}	Minimum Input Swing		150			mV
I _{IH}	Input HIGH Current	D			150	μΑ
I _{IL}	Input LOW Current	D	0.5			μΑ

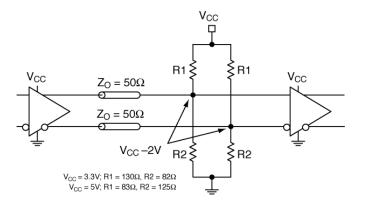
Notes:

- 1. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- 3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the devices most negative potential on the PCB.
- 4. Output loaded with 50Ω to V_{CC} –2V.

AC Electrical Characteristics


 $V_{EE} = V_{EE}$ (min) to V_{EE} (max); $V_{CC} = GND$; $T_A = -40^{\circ}C$ to +85°C; unless noted.

Symbol	Parameter	Condition	Min	Тур	Max	Units
t _{pd}	Propagation Delay to: /Q Output D (Diff) D (SE)				380 430	ps ps
	QHG, /QHG Output D (Diff D (SE)				730 780	ps ps
t _S	Set-Up Time EN		150			ps
t _H	Hold Time EN		150			ps
t _{SKEW}	Duty Cycle Skew (Diff	Note 5		5	20	ps
V _{PP}	Minimum Input Swing	Note 6	150			mV
V _{CMR}	Common Mode Range	Note 7	-1.3		-0.4	V
t _r , t _f	Output /Q and QHG, /QHG Rise/Fall Times (20% to 80%)	At full output swing	100	225	350	ps


Notes:

- 5. Duty cycle skew is the difference between a t_{pd} propagation delay through a device.
- Minimum input swing for which AC parameters are guaranteed. The device has a DC gain of ≈ 40 to Q, /Q outputs and a DC gain of ≈ 200 or higher to /Q_{HG}, Q_{HG} outputs.
- 7. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between $V_{PP}(min)$ and 1V. The lower end of the CMR range varies 1:1 with V_{EE} . The numbers in the spec table assume a nominal $V_{EE} = -3.3V$. Note for PECL operation, the $V_{CMR}(min)$ will be fixed at $3.3V |V_{CMR}(min)|$.

Timing Diagram

Output Interface Applications

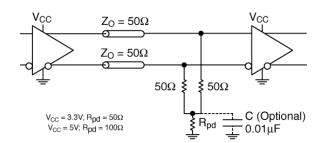


Figure 1a. Parallel Thevenin-Equivalent Termination

Figure 1b. Three Resistor "Y" Termination

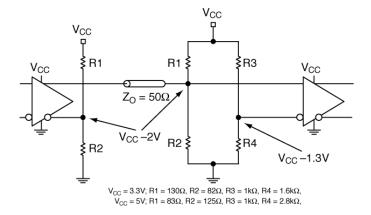
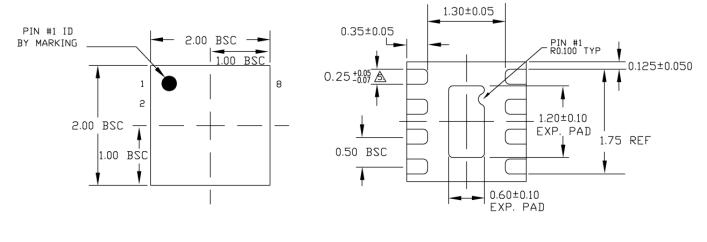
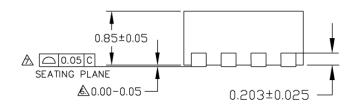



Figure 1c. Terminating Unused I/O


5

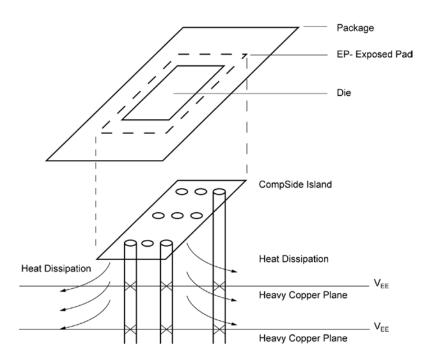
Package Information

TOP VIEW

BOTTOM VIEW

- NOTE:

 1. ALL DIMENSIONS ARE IN MILLIMETERS.
 2. MAX. PACKAGE WARPAGE IS 0.05 mm.
 3. MAXIMUM ALLOWABE BURRS IS 0.076 mm IN ALL DIRECTIONS.
 4. PIN #1 ID ON TOP WILL BE LASER/INK MARKED.


 DIMENSION APPLIES TO METALIZED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25 mm FROM TERMINAL TIP.

 APPLIED ONLY FOR TERMINALS.

 APPLIED FOR EXPOSED PAD AND TERMINALS.

SIDE VIEW

8-Pin Ultra-Small EPAD-DFN

PCB Thermal Consideration for 8-Pin DFN Package

Package Notes:

- 1. Packaging meets Leve 2 qualification.
- 2. All pasrts are dry-packaged before shipment.
- 3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2009 Micrel, Incorporated.